4. If the distributed load follows a normal distribution  $f \sim N(60, 2^2)$  lb/ft, determine the distributions of the internal normal force and shear force acting at point *B* of the two-member frame shown in the figure.



## **Solution**

A free-body diagram is shown below.



Due to  $f \sim N(60, 2^2)$  lb/ft, we know  $F = 8f \sim N(480, 16^2)$  lb.

$$\Sigma M_A = 0; -F(4) + F_{DC} \sin 45^\circ(8) = 0$$

$$\mu_{F_{DC}} = \frac{4\mu_F}{8\sin 45^\circ} = \frac{4(480)}{8\sin 45^\circ} = 339.46 \text{ lb}$$

$$\sigma_{F_{DC}} = \frac{4\sigma_F}{8\sin 45^\circ} = \frac{4(16)}{8\sin 45^\circ} = 11.32$$

Thus,  $F_{DC} \sim N(339.46,11.32^2)$  lb.

$$\Sigma F_x = 0; -A_x + F_{DC} \cos 45^\circ = 0$$

$$\Sigma F_y = 0; A_y - 400 + F_{DC} \sin 45^\circ = 0$$

Solving the equations, we have  $A_x \sim N(240, 8^2)$  lb and  $A_y \sim N(160, 8^2)$  lb.

From the free-body diagram below,



$$\Sigma F_x = 0; A_x - N_B = 0$$

$$\Sigma F_{y} = 0; A_{y} - V_{B} - F_{1} = 0$$

$$F_1 = 4f$$

Thus, the normal force is  $N_B = A_x \sim N(240.8^2)$  lb; the shear force is  $V_B \sim N(-80.11.3^2)$  lb.