6. Two independent forces $F_1 \sim N(12,0.5^2)$ kg and $F_2 \sim N(18,0.5^2)$ kg act at points B and C of cable ABCD. (1) Determine the tension in the cable CD. (2) If the maximum load of the cable is 210 N, what is the probability the cable CD might fail?

Solution

(1) From FBD, we have:

$$\sum M_A = 0; \quad T_{CD} \cos 75.96^{\circ} (4) + T_{CD} \sin 75.96^{\circ} (8) - F_2(9.81)(8) - F_1(9.81)(3) = 0$$

Then, we can obtain the distribution of T_{CD} :

$$\mu_{T_{CD}} = \frac{\mu_{F_2}(9.81)(8) + \mu_{F_1}(9.81)(3)}{\cos 75.96^{\circ}(4) + \sin 75.96^{\circ}(8)} = 202.23 \text{ N}$$

$$\sigma_{T_{CD}} = \frac{(9.81)\sqrt{\sigma_{F_2}^2(64) + \sigma_{F_1}^2(9)}}{\cos 75.96^{\circ}(4) + \sin 75.96^{\circ}(8)} = 4.80$$

Thus, the distribution of cable *CD* is:

$$T_{CD} \sim N(202.23, 4.80^2) \text{ N}$$
. Ans.

(2) If the maximum load of the cable CD is 210N, then the probability that the system might fail is:

$$P(T_{CD} \ge 210) = 1 - P(T_{CD} < 210) = 1 - \Phi(\frac{210 - 202.23}{4.8}) = 0.0529$$
 Ans.