6. The weight of the crate follows a normal distribution $W \sim N(1000, 120^2)$ lb and the crate is hoisted using ropes *AB* and *AC*. Each rope can withstand a maximum tension $T_{\text{max}} \sim N(6000, 220^2)$ lb before it breaks. If *AB* always remains horizontal and θ is 12°, determine the probability that rope *AB* and *AC* will break. Note all the forces W, T_{max} , F_{AB} , and F_{AC} are independently distributed.

Solution

The probability of the break of rope AC is 0.027 and the probability of the break of rope AB is 0.016.