Quiz 3

Please put your answers in the following table.

1	2	3	4	5	6	7	8	9	10

- 1. A component is subjected to two independent forces X_1 and X_2 , and the resultant force is given by $Y = g(X_1, X_2) = X_1 + X_2$ where $X_1 \sim N(50, 3^2)$ kN and $X_2 \sim N(-30, 4^2)$ kN. What is the mean value of *Y*? A. 80 kN
 - B. 20 kN
 - C. -20 kN
 - D. 40 kN
- 2. In problem 1, what is the standard deviation of *Y*?
 - A. 5 kN
 - B. 7 kN
 - C. 1 kN
 - D. Cannot be determined

3. In problem 1, the failure event is defined by Y < 0. What is the probability of failure?

- Α. Φ(20/7)
- B. Φ(-4)
- C. Φ(4)
- D. Φ(-20/7)
- 4. In problem 1, what is the probability that *Y* is less than 20 kN?
 - A. < 50%
 - B. > 50%
 - C. = 50%
 - D. Cannot be determined
- 5. For a beam, the factor of safety is defined by $n_s = \mu_Y / \mu_X$, where μ_X and μ_Y are the means of the stress *X* and strength *Y* of the beam, respectively. The reliability of the beam is defined by the probability $R = \Pr\{Y > X\}$. Also denote σ_X and σ_Y as the standard deviations of *X* and *Y*, respectively. Which of the following actions cannot improve reliability?
 - A. Increase n_s and keep σ_X and σ_Y constant
 - B. Keep n_s constant and increase σ_Y
 - C. Keep n_s constant and decrease σ_X
 - D. Keep n_s constant and decrease both σ_X and σ_Y .
- 6. In problem 5, the factor of safety n_s has no relation with the reliability of the beam. (True or False)
- 7. 100 failure samples are obtained out of 1,000,000 samples. The probability of failure estimated is
 A. 0.9999 B. 0.0001 C. 0.5 D. 0

- 8. In problem 7, if 1000 failure samples are obtained, the reliability will be decreased. (True or False)
- 9. If the forces acting one a component follow independent normal distributions, the resultant force also follows a normal distribution. (True or False)
- 10. A design team designed two cantilever beams. The deflection of the tip of each beam is normally distributed as shown. If a smaller deflection is preferred, which design is better?A. Design 1B. Design 2
 - C. Equally good D. Cannot determine

