
 Probabilistic Engineering Design 

Chapter One Introduction 

1 Introduction 

This chapter discusses the basics of probabilistic engineering design. 

Its tutorial-style is designed to allow the reader to quickly grasp the 

overall picture of probabilistic engineering design without the burden 

of theoretical materials. For this reason, the presentation emphasizes 

the basic concepts and principles accompanied by simple examples. 

The major concepts include uncertainty, reliability, and robustness. 

The two commonly used design methodologies, which are reliability-

based design and robust design, are also discussed briefly, with ex-

amples illustrating their typical usage.   

1.1 Uncertainty  

Uncertainty is something unknown, or something questionable; it also 

means not having sure knowledge. Uncertainty is ubiquitous in engi-

neering. Overlooking or mistreating it may result in either overly risky 

or overly conservative designs. To manage uncertainty appropriately 

during engineering design, we need at first to model it with a suitable 

mathematical structure (uncertainty modeling), then understand its ef-

fects on product performance (uncertainty analysis), and ultimately 

minimize its effect by choosing proper design variables (design under 

uncertainty). Probabilistic design is a major methodology for design 

under uncertainty.  

Let us at first understand what uncertainty is and how we model it. 

Uncertainty can be viewed as the difference between the present state 

of knowledge and the complete knowledge. Some common examples 

of uncertainty are listed below. 
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• Random part dimensions due to manufacturing imprecision. 

For example, suppose the length of a link of a mechanism is 

designed to be 1.5 m long with a tolerance of 1 mm. For the 

links in compliance with specification, if we measure their 

lengths, we may find that the actual values vary slightly around 

1.5 m within the tolerance range ±1 mm. If defective links are 

screened out, the actual lengths of the links will always vary 

between 1500 – 1 mm and 1500 + 1 mm.  

• Random forces acting on a structural system or a mechanical 

system. For example, a bridge is subject to random loading; the 

load of a vehicle is stochastic due to random road conditions 

and random vibrations.  

• Random material properties. No materials are perfect. They ex-

hibit random behaviors, such as random stiffness, random ulti-

mate strength, and random ductility.  

As engineers, why are we concerned with uncertainty? The reason 

is that if we ignore or inappropriately treat uncertainty during the en-

gineering design process, we may experience the following conse-

quences:  

• Erroneous decision-making 

• Low quality, robustness, reliability, safety 

• High risk 

• High cost of product-life cycle 

• Costly warranty 

• Overly conservative products 

• Low customer satisfaction, and 

• Catastrophe 

For example, if a product is not robust against uncertainty, the prod-

uct performance will be sensitive to the variation of the system inputs. 

As a result, small variations such as the imprecision of manufacturing 

may lead to large variations in product performance. Large variations 

in performance mean low quality and will consequently result in low 

customer satisfaction. Moreover, if a product is not reliable in the 

presence of uncertainty, the chance of failure will be high. Cata-

strophic events may occur when the product fails.   

As a result, uncertainty should be carefully managed in engineering 

design. In many design problems, such as aircraft design, uncertainty 
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has become a central consideration in performance of engineering 

systems.  

In this book, we will discuss how to deal with uncertainty in engi-

neering design at the following complementary levels: modeling, 

analysis, and design, which are the three aspects we have discussed 

previously. This is demonstrated by a framework of probabilistic en-

gineering design in Fig. 1.1.  

 

 

 

Fig. 1.1. Deal with Uncertainties at Three Levels 

 

• Level 1 – Uncertainty modeling 

The task of uncertainty modeling is to quantify uncertainty mathe-

matically. The probability theory is commonly used for this task. 

An uncertain quantity is described by a random variable and is 

characterized by a probability distribution. Since the distribution is 

usually obtained from statistical data, statistics is also used to for-

mulate the distribution. The mathematical structures of the uncer-

tain variables at the uncertainty modeling level then provide the in-

put to uncertainty analysis at the next level, or level 2 below. 

• Level 2 – Uncertainty analysis 

The task of uncertainty analysis is to quantify the uncertainty in 

product performance (model output) given the uncertainty in the 

input variables that determine the performance. The uncertainty in 

the input variables is modeled at the above modeling level. Uncer-

tainty analysis helps engineers understand how uncertainty impacts 
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design performance and also helps them evaluate important design 

characteristics, such as the reliability and robustness. The 

knowledge from uncertainty analysis will then be used at the next 

level, or level 3, for managing and mitigating the effects of uncer-

tainty. 

• Level 3 – Design under uncertainty 

The task of design under uncertainty is to mitigate the effects of 

uncertainty by making appropriate decisions. Depending on design 

needs, the focus may be on the reliability, robustness, or quality. 

For making the design cost effective, the common practice is to se-

lect optimal design variables at the design stage without eliminating 

the causes of uncertainty. In many cases, eliminating uncertainty 

causes is very expensive. It requires higher precision manufactur-

ing, stricter quality control, and higher grade materials and compo-

nents. Design under uncertainty is an iterative process. During this 

process, the design is continuously updated until it is satisfactory. 

Uncertainty analysis is performed for each updated design. There-

fore, the design process repeatedly calls uncertainty analysis. 

Next we elaborate the three levels. 

1.2 Uncertainty Modeling 

There are many types of uncertainty, but the one in a form of random-

ness is most commonly formulated and encountered in engineering. It 

is the major type of uncertainty with which this book deals.  

Let us use X  to denote a random quantity, and we call it a random 

variable. As opposed to a deterministic variable, a random variable 

does not have a single, fixed value; it can rather take on a set of pos-

sible different values, each of which falling into a range is associated 

with a chance. This chance is called a probability ranging between 0 

and 1. For example, the length of the mechanism link mentioned 

above is a random variable. It may take any values within its tolerance 

range. Even though we do not know the actual value of the length 

before measuring it, we may know the probability of possible values 

of the length within a certainty range in advance. The probability of 

X  taking certain values can be described by a mathematical function, 
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and this function is called a distribution function, or a cumulative dis-

tribution function (CDF).  

Let the CDF be ( )F x  for a particular value x .  ( )F x  is defined as 

the probability that the random variable X  is less than or equal equa-

tion to x , or 

 ( ) Pr{ }F x X x= ≤  (1) 

where Pr( )⋅  stands for probability. 

Knowing the CDF of X , we can find anything about X , for in-

stance, its mean value Xµ , which tells us the average of all the possi-

ble values of X .  We may also know its standard deviation Xσ , 

which shows the amount of variations in X  or dispersion around the 

average. A small value of Xσ  indicates that the possible values of X  

tend to be close to the average while a large value of  Xσ  suggests 

that the possible values vary over a large range around the average.  

There are many distributions, among which the normal distribution 

or Gaussian distribution is the most commonly used. A normal distri-

bution is defined by its mean Xµ  and standard deviation Xσ . Its CDF 

is given by 

 ( ) X

X

x
F x

µ
σ

 −
= Φ 

 
 (2) 

where function ( )Φ ⋅  is defined by 

 ( )
2

1
exp

2

1

2

u

uu
π−∞

 Φ =  
 
−∫  (3) 

which is usually tabulated in a statistics or probability textbook and 

can be computed numerically. A normally distributed random varia-

ble with Xµ  and Xσ  is denoted by 2,~ ( )X XX N µ σ , where 2

Xσ  is 

called variance. 

For a normal distribution, there are two good futures that we will 

use later in this chapter. They are given below. 

Feature 1: If 2,~ ( )X XX N µ σ  and Y a bX= +  where a and b are 

constant, then Y  is also normally distributed with 2,~ ( )Y YY N µ σ  in 

which  

 Y Xa bµ µ= +  (4) 
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and 

 Y Xbσ σ=  (5) 

Feature 2: If 2,~ ( )X XX N µ σ , 2,~ ( )Y YY N µ σ , X  and Y  are inde-

pendent, and Z aX bY c= + +  where a, b, and c are constant, then Z  

is also normally distributed with 2,~ ( )Z ZZ N µ σ  in which 

 Z X Ya b cµ µ µ= + +  (6) 

and 

 2 2( ) ( )X YZ a bσ σ σ= +  (7) 

We assumed that X  and Y  are independent. What does this mean? 

It intuitively means that the occurrence of certain values of X  does 

not affect that of certain values of Y . For example, if two cylinders 

are made in two different factories with different machine tools, the 

diameters X  and Y  of the two cylinders are independent because the 

manufacturing imprecision in one factory has nothing to do with that 

in the other factory. If the cylinders are made from one product line, 

however, their diameters may be dependent because they may be sub-

ject to the same manufacturing imprecision. 

As discussed above, uncertainty is unavoidable in engineering. To 

handle uncertainty, we need a mathematical tool to model uncertainty, 

and the probability theory is such a tool. With this tool we can quan-

tify the effects of uncertainty and then mitigate such effects in engi-

neering analysis and design. For this purpose, we briefly review engi-

neering analysis and engineering design in Sec. 1.2 and then discuss 

uncertainty analysis and design under uncertainty.   

1.2 Engineering Analysis and Engineering Design 

Engineering design is a process of developing a system, component, 

or process to meet desired needs. It involves systematic and creative 

applications of basic science, mathematics, and engineering sciences 

to practical problems.  

During a design process, there are many decisions to be made; for 

example, what configurations of a system should take? What materi-

als should be used? How long will be the expected lifetime? What 
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warranty policy should be adopted? Engineering design is therefore a 

decision-making process.  

An engineering process is not static; it is dynamic and iterative. We 

may continuously refine our designs when discovering that the current 

design does not meet some requirements or fulfill desired functions. 

The iterations continue until a good design is reached within a given 

schedule and budget. 

Due to its open-ended nature, a design problem often does not have 

a unique solution, and in some sense there are no correct answers to a 

design problem. It is the reason why so many different vehicles are 

running on the streets for the same need (function) – transport passen-

gers and goods. 

For example, if we would like to realize the following function: 

transform a rotational motion into another rotational motion, we then 

have a design problem. There are many potential solutions as we may 

realize the intended function by using a four-bar linkage, a pair of 

gears, a belt-pulley system, or other transmission systems. The pro-

cess of designing this transmission system is iterative, and we may go 

back and forth before finalizing the design.  

To judge if a design can meet specified needs, we must evaluate it. 

This is the task of engineering analysis. Engineering analysis is the 

evaluation of a system, component, or process under design to reveal 

its properties, performance, or state. Engineering analysis is typically 

performed for a potential design before physical prototypes are made 

or when the design does not meet a need. Doing engineering analysis 

therefore often means making predictions. The analysis result not 

only enables design engineers to better understand their design but 

also allows for improvements in the design. Table 1.1 lists the differ-

ences between design and analysis. 

Table 1.1. The Differences between design and analysis 

Design Analysis 

A decision making process A problem solving process 

Solutions to new problems or new 

solutions to existing problems 

Solutions to existing problems 

More than one solutions Only one unique solution in most 

cases 
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As mentioned above, design and analysis are tied to each other. A 

design involves a number of analyses as shown in Fig. 1.2.  After hav-

ing generated a number of design concepts, engineers perform anal-

yses on these concepts. And then they use analysis results to make 

decisions on selecting the best design concepts with respect to engi-

neering requirements. After the concept selection stage, engineers 

make more decisions in order to detail and refine the selected design 

concept. If the design is not considered satisfactory, they will use 

analysis results to improve and update the design by making neces-

sary changes on material selections, configurations, component inter-

faces, parameters, and so on. The process iterates until a satisfactory 

design is identified. During this process, numerous decisions are 

made. 

 

 

Fig. 1.2. Relationship between design and analyses 

To perform an analysis, we usually rely on analysis models. A gen-

eral analysis model is shown in Fig. 1.3 and is given by 

 ( )y g= x  (8) 

in which x is a vector of input variables, and it may contain design 

variables, e.g. the diameter of a shaft, which can be controlled and 

changed during the design process, or design parameters, e.g. the tem-

perature of the environment, that is out of designer’s control. y is an 

output or response variable, which is dependent on x. y is usually a 

design performance, such as the cost, maximum stress, or accelera-

tion.   
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Fig. 1.3. An analysis model 

( )g ⋅  is the functional relationship between input x and output y. In 

complex engineering design, ( )g ⋅  may not have an analytic formula, 

and the output may be obtained through numerical calculations or 

simulations. This kind of model is often called a black-box model. 

Examples of black-box models include those of finite element analy-

sis, dynamics simulation, and computational fluid dynamics. In prod-

uct development such as automobile design, sophisticated engineer-

ing computational models are eminent. Different from a scientific 

model that is to fit extant data, an engineering analysis model is pri-

marily used to predict future product performances before a physical 

product is made. 

Analysis models are important for many reasons. (1) Significant 

upfront design decision-making occurs prior to the availability of 

physical prototypes. Such decision-making relies heavily on the pre-

dictions of design performances from the models. (2) Physical testing 

can be expensive, time consuming, harmful, or even in some situa-

tions prohibitive. (3) Engineers use models to gain useful insights into 

certain phenomena, which may be lacking from physical experiment 

due to measurement system limitations.   

1.3 Probabilistic Analysis and Probabilistic Design  

As discussed previously, uncertainty is unavoidable in engineering 

analysis and design. To deal with uncertainty in engineering analysis 

and design, we need to perform probabilistic engineering analysis and 

probabilistic design.  

Probabilistic engineering analysis is the evaluation of the effects of 

uncertainty on the performance of a system, component, or process. 

In probabilistic engineering analysis, both model input and output are 
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random, and we then use capital letters for them. Then the analysis 

model in Eq. (8) is rewritten as 

 ( )Y g= X  (9) 

As indicated in Eq. (9), uncertainty in model input X  can propa-

gate to model output Y  through the model ( )g ⋅ . Probabilistic analy-

sis helps engineers understand how uncertainty in the model input im-

pacts the uncertainty in the model output. With this understanding, 

engineers are able to manage and mitigate the effects of uncertainty 

during the design process by choosing appropriate design variables, 

which are part of the model input X .  

Through probabilistic analysis on an existing design, engineers can 

evaluate if the design satisfies all the requirements in the presence of 

uncertainty. For example, they will be able to know if the design is 

reliable so that the product has a high chance of not failing; they will 

also be able to know if the design is robust so that the product can 

function properly under various operational conditions. For this rea-

son, next we introduce two basic concepts – reliability and robustness. 

1.3.1 Reliability analysis 

Reliability is intuitively the probability of success or precisely is the 

probability that a product properly performs its intended function 

without failures under specified conditions in a given period of time. 

Reliability tells us the likelihood of no failures. We may use the per-

formance function ( )g ⋅  to predict if a failure would happen. For in-

stance, if the performance function is the difference between a 

strength and a stress, then a failure would occur when the strength is 

less than the stress, or ( ) 0g ⋅ < . Hence ( ) 0g ⋅ <  indicates a failure, and 

the probability of failure can therefore be defined by 

 Pr{ }( ) 0f Yp g= <= X  (10) 

And the associated reliability is   

 1 fR p= −  (11) 

Or 

 (Pr{ ) 0}R gY= = >X  (12) 

The task of the reliability analysis is to find the reliability or the 

probability of failure given the distributions of the input variables X. 

As shown in Eq. (9), the response variable Y is also a random variable 
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because it is a function of random variables X. As indicated in Eq. 

(10), the probability of failure is the CDF of Y at 0; namely 

 Pr{ 0} (0)Yf Yp F< ==  (13) 

where ( )YF ⋅  is the CDF of Y. If Y follows a normal distribution with 

a mean of Yµ  and a standard deviation of Yσ , according to Eq. (2), 

we have 

 Y
f

Y

p
µ
σ

 
= Φ − 

 
 (14) 

 

Example 1.1 Reliability analysis for a solid cylinder 

The cylinder in Fig. 1.4 is subject to a random force Q , which is 

normally distributed. The yield strength of the component yS  is also 

normally distributed and is independent from Q. The distribution pa-

rameters are given in Table 1.2. The diameter of the cylinder is 

36d =  mm. Determine the reliability of the component in terms of 

yielding failure.  

In this example, for an easy demonstration, we treat the diameter 

d  as a deterministic variable. In reality it is random, but its uncer-

tainty is small because its tolerance is small.  

 

Fig. 1.4. A cylinder subject to an axial load 

 

Table 1.2. Distributions of random variables 

Variables Mean Standard deviation Distribution 

Q 200 kN 25 kN Normal 

yS  250 Mpa 25 MPa Normal 

 

The normal stress is given by  

Q Q 

d 
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2 2

4

/ 4

Q

d
S Q

dπ π
= =  

If the stress is greater than the yield strength, we consider that a 

failure occurs. The performance function, therefore, is define as 

 
2

4
( ) yY S

d
Q

π
−=X  

where 
1 2( , ) ( , )yX X Q S= =X .  

The probability of failure is then calculated by  

 
2

Pr{ Pr 0
4

0}f yp QY S
dπ

 < = <= 


− 


 

Since Q and Sy are normally and independently distributed, accord-

ing to Feature 2 of a normal distribution in Sec. 1.1, Y is normally 

distributed. Using Eqs. (6) and (7), we have the mean and standard 

deviation of Y as follows:  

 

2

3

2
3

6
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4 4
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yY S Q

d
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= − = − =

  
 

And 

 
2

2
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3
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6
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4 4
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0 
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yS QY
d

σ σ σ
π π −

 
   + +       

   = = =  

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Then according to Eq. (14), the probability of failure is 

 
53.51

25
( 2.1405) 0.0162Y

f

Y

p
µ
σ

   = Φ − = Φ − = Φ − =   
  

 

And the reliability is 

1 1 0.0162 0.9838fR p= − = − =
 

How do we interpret the result? We may say that the likelihood that 

the component will fail is 1.62%. Or statistically 162 components 

might fail if 10,000 components are put into operation.  

To confirm and visualize the result, let us use a simulation. We first 

plot the performance function in Fig. 1.5. The straight line represents 
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the limit of the performance function 

2
( 0)

4
y yg S SS

d
Q

π
− = −= =X  where the stress is equal to the 

strength. The region above the line is the domain where )( 0g >X  or 

the stress is less than the strength. This domain is called a safe region. 

Below the line is called the failure region because )( 0g <X  or the 

stress is greater than the strength.  

Knowing the distributions of random variables Q  and yS , we can 

simulate their possible values by drawing samples from their distribu-

tions. The samples are also shown in Fig. 1.5. Most of the samples are 

in the safe region, and fewer samples are in the failure region. The 

samples in the failure region are represented as solid dots. The ratio 

of the number of the samples falling into the failure region over that 

of the total samples is an estimate of the probability of failure. When 

the total number of samples goes infinite, the ratio approaches the true 

probability of failure. This method is called Monte Carlo simulation. 

 

Fig. 1.5. Visualization of the reliability analysis by simulation 

From the reliability analysis, we have obtained the reliability and 

probability of failure of the component. For a practical point of view, 

the probability of failure for this problem is too high, thereby not ac-

ceptable. We will then need to find a solution to reduce the probability 

of failure. This is the task of reliability-based design, which will be 

discussed in Section 1.4.  
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1.3.2 Robustness analysis 

Robustness is used to measure the sensitivity of a product perfor-

mance with respect to noises or uncertainties. A robust design ensures 

that the nominal (mean) performance of the product be optimal and 

that the variation in the performance be minimum. The purpose of 

robustness analysis is to evaluate the mean values and the variations 

of performance variables. As what we have done in reliability analy-

sis, we also use the performance function ( )Y g= X  for robust analy-

sis, which is then concerned with the mean value of the performance 

variable Y  for the average performance and with the standard devia-

tion of Y  for the variation in the performance. The mean and standard 

deviation are denoted by Yµ  and Yσ , respectively.  

Fig. 1.6 demonstrates four possible scenarios for a design with two 

performance variables 1 1 )(Y g= X  and 2 2 )(Y g= X  under uncertain-

ties in input X .  

Case 1: Off target, large variation 

The actual performance variables are shown as a cloud in case 1 of 

Fig. 1.6. The center of the cloud is far away from the target. Because 

of this, the average performance deviates too much from the ideal 

value. The size of the cloud is also too large, indicating high variations 

in the performance variables. Given the poor average performances 

and large performance variations, the design is not robust.     

Case 2: Off target, small variation 

The design is better than that in case 1 because its variations in the 

performances are smaller. But the average performances are still far 

away from the target, and the design is not considered robust. 

Case 3: On target, large variation 

The average performances are on the target, but the performance 

variables fluctuate dramatically around the target. We do not have a 

robust design because its performances vary too much, possibly from 

piece to piece, or from user to user.   

Case 4: On target, small variation 
This is a robust design because its average performances are just on 

the target and the variations in the performances are small.  



15 

 

Fig. 1.6. Performance variables under uncertainty 

To evaluate the robustness, we need to calculate the mean perfor-

mance and the standard deviation of the performance. The robustness 

analysis can then be formed as follows: 

 

Find Yµ  and Yσ  given ( )Y g= X  and distributions of X  

 

Next, let us discuss a simple problem where the performance func-

tion is linear and 1 2( , , , )nX X X=X ⋯  are normally distributed with 

1 ~ ( , )i iX N µ σ  ( 1, 2, , )i n= ⋯ . We assume again that iX  

( 1, 2, , )i n= ⋯  are independent. Suppose 
0

1

n

i i

i

Y a a X
=

= +∑ , where ia  

( 0,1, , )i n= ⋯  are constant.  

According to Eqs. (5) and (6), the mean of performance variable is  
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 2 2

1

n

Y i i

i

aσ σ
=

= ∑  (16) 

Example 1.2 

A steel ball is launched at point A with an initial speed of v  and 

directed at an angle of  θ  with the horizontal as shown in Fig. 1.7. 

Point B is the target, whose distance from A is 25.0r =  m.  

 

 

Fig. 1.7. A ball-launching machine 

We can change two variables, which are v  and θ , to reach the de-

sired target.  Since v  and θ  could not be precisely controlled, they 

are treated as random variables. Their distributions are normal, and 

their standard deviations are 0.01vσ =  m/s and 0.1θσ = � . The design 

problem is to determine the means of v  and θ , or Vµ  and θµ , to hit 

the target. Two designs are generated. For Design 1, 10θµ = � , and for 

Design 2, 30θµ = � . We now evaluate the robustness of the two de-

signs. 

Assume that there is no air resistance. Then, we have the x- and y- 

coordinates of the ball below.  
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cos
2

0 sin

ball grav

ball

x v g t

y v t

θ

θ

 = −

 = =

 (17) 

where t  is the time, and gravg  is the gravitational acceleration.  

Eliminating the time, we have the distance 

A 
B 

x 

y 

v

r 
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2 sin 2

ball

grav

v
x

g

θ
=  (18) 

We consider the distance as the performance of the design, and 

then the performance function is given by 

 
2 sin 2

( ) ( , )
grav

v
Y g g v

g

θ
θ= = =X  (19) 

Our task now is to compute the mean and standard deviation of the 

performance, or Yµ  and Yσ . To use Eqs. (5) and (6), which are for a 

linear performance function, we linearize ( , )g V θ  at Vµ  and θµ . 

 ( , ) ( , )
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where 
0
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∂ ∂
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, 
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2
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From Eq. (17), we have 
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and 
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Using Eqs. (5) and (6), we obtain 
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θµ µ
µ =  (23) 

 

2 2

( , ) ( , )

2 2 2

( ) ( )

2
[sin(2 ) ] [ cos(2 ) ]

v v

Y v

v
v v

grav

g g

v

g

θ θ

θ
µ µ µ µ

θ θ θ

σ σ σ
θ

µ
µ σ µ µ σ

∂ ∂
= +

∂ ∂

= +

 (24) 

To bring the mean performance to the target, we need set  
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2 sin 2v

Y

grav

r
g

θµ µ
µ = =  (25) 

This gives 

 
sin 2

grav

v

rg

θ

µ
µ

=  (26) 

For Design 1 

 
25(9.81)

26.78
sin[2(10 )]

vµ = =
�

 m/s (27) 

For Design 2 

  

 
25(9.81)

16.83
sin[2(30 )]

vµ = =
�

 m/s (28) 

Derived from Eq. (23), both of the above mean values of the veloc-

ity guarantee that the mean distance 
1 2

25.0Y Y rµ µ= = =  m/s. 

We now calculate the standard deviations using Eq. (22). 

For Design 1, 

 
2 2 22(26.78)

[sin 20 (0.01)] [26.78 (cos20 )(0.1)]
9.81

0.2405 m/s

Yσ = +

=

� �

    

(29)                                                                                             (29) 

For Design 2, 

 
2 2 22(16.83)

[sin 60 (0.01)] [16.83 (cos60 )(0.1)]
9.81

0.0585 m/s

Yσ = +

=

� �

 (30) 

Yσ  of Design 2 is much lower than that of Design 1, and both de-

signs produce the same average distance to its target. As a result, De-

sign 2 is more robust than Design 1 because the former has lower var-

iation. As what we have done for reliability analysis, we can also use 

a simulation to visualize the results. Figs. 1.8 and 1.9 show 50 trials 

of launching the ball for Design 1 and Design 2, respectively. The 

simulated distances from the two designs fluctuate around the desired 

distance. Both of the designs have the same average performance (dis-

tance). However, the simulated distances produced by Design 2 are 
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much closer to the ideal value than those by Design 1. The simulation 

results clearly indicate the robustness of the two designs. 

 

 

Fig. 1.8. Distance produced by Design 1 

 

 

Fig. 1.9. Distance produced by Design 2 
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1.4 Reliability-Based Design 

In Sec. 1.2 we have discussed how to evaluate the reliability for a 

given design. In this subsection, we look at a reverse problem – gen-

erate a design that satisfies reliability at a given reliability level. In 

this problem, we know the reliability target, and we choose the opti-

mal design variables to reach the reliability target. This is the task of 

reliability–based design (RBD). 

We usually need to tradeoff between reliability and product devel-

opment cost. This is understandable because the cost normally goes 

up when reliability increases. The common strategy to tackle this con-

flict is to minimize the cost on the condition that the reliability re-

quirement is met. Our desire or objective is then to make the develop-

ment cost minimum, and at the same time we require that the actual 

reliability should exceed its desired level or should be at least at the 

desired level. In other words, we treat the reliability requirement as a 

design constraint. Since both the cost and reliability are determined 

by design variables, we can select appropriate design variables so that 

the cost becomes minimum while the reliability requirement is main-

tained. A general RBD model is therefore formatted as follows: 

Find design variables d  

To minimize the cost function ( , )C d X  

Subject to  

Reliability ( , ) reqR R≥d X  

        Other requirements (constraints) 

In the above model, d  is a vector of design variables, which are 

those variables that can be changed by designers. For example, when 

we design the cylinder in Example 1.1, we can change the diameter 

of the cylinder, and the diameter is therefore a design variable. reqR  is 

the desired reliability.  

The above model is in a form of optimization. It can be solved au-

tomatically by many numerical optimization algorithms. During the 

solution process, the design variables are continually updated until an 

optimal solution is reached. At each point of updated design variables, 

the reliability has to be calculated, which is the task of reliability anal-

ysis we have presented in Sec. 1.2. Reliability analysis is therefore an 
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important component of RBD and is repeatedly called during the 

RBD process. 

 

Example 1.3 Reliability-based design for a solid cylinder 

The cylinder is the component we discussed in Example 1.1. It is 

shown in Fig. 1.3. This component is subject to a random force Q , 

and its yield strength yS  is also random. The random variables are 

therefore 1 2( , ) ( , )yX X Q S= =X . We have performed reliability anal-

ysis for the cylinder in Example 1.1. We now have a design problem 

where the required reliability is 99.99%, or 0.9999regR = . There is 

only one design variable, which is the diameter of the cylinder, and 

therefore ( )d=d . We choose the cross-sectional area 
2 / 4c A dπ= =  as our cost-type objective because it is closely related 

to the material cost. Then our task is to determine the value of d  so 

that A  is minimum and reliability satisfies 0.9999regR R => . 

In Example 1.1, we have obtained the performance function, which 

is given by 
24( ) yY S Q dπ−=X . The reliability is computed by 

 
2

Pr{ 0} Pr 0
4

y QR Y S
dπ

= − > = 


> 


 

The RBD model for this problem is then formulated as 

 

2

2

min

Pr

( ) / 4

subject to

4
( , ) 0 0.9999

r

y

C d

R r S
d

Q

dπ

π



 =



 = − > ≥

 


X

 

For this simple problem, the RBD model can be solved manually. 

The yield stress 
2

4
S Q

dπ
=  indicates that increasing d  will decrease 

the stress, thereby improving the reliability. On the contrary, doing so 

would increase the cost because the cross section would become 

larger. If we set the reliability at its target, or 0.9999reqR R == , we 
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can obtain the maximum stress or the minimum d  so that the relia-

bility requirement is met. This minimum d  in turn will produce a 

minimum cross-sectional area or cost. 

We therefore use 0.9999R =  to determine the design variable d . 

From Example 1.1, we know 

1 Y
f

Y

R p
µ
σ

 
= − = Φ − 

 
 

We then obtain 

1 1(1 ) (1 0.9999) 3.7190Y

Y

R
µ
σ

− −= −Φ − = −Φ − =  

where 
1
( )

−Φ ⋅  is the inverse function of ( )Φ ⋅ . 

Plugging 
2

4
yY S Q

d
µ µ µ

π
= − , 

2

2 2

2

4
yS QY

d
σ σ σ

π
 +  


=


, and the 

equations we had in Example 1.1 into the above equation yields 

6 3

2

2
2 2

6 3

2

250(10 )

250(1

4
200(10 )

3.7190
4

0 ) 25(10 )

d

d

π

π
    +   

=

  

−
 

Solving the equation yields 0.0319d =  m, and we set 32d =  mm. 

This diameter guarantees that the reliability will be at least 0.9999 and 

that the cross-sectional area will be at most 
2 2/ 4 804.25 2 mm3A π == . 

1.5 Robust Design 

The purpose of robust design (RD) is to make product performance 

not sensitive to variations. As we discussed in Sec. 1.3, robustness is 

measured by the mean performance and the standard deviation of the 

performance. The major advantage of RD is that robustness can be 

achieved without eliminating the sources of uncertainty. (Eliminating 

the sources of uncertainty is costly.) This is done by just choosing 

appropriate design variables. 

A performance variable is called a quality characteristic (QC) in 

RD. It is a response variable that significantly affects the product 
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function and customer satisfaction. The efficiency, reliability, dura-

bility, and engine quietness of a vehicle, are examples of QCs. There 

are three types of QCs. 

• Nominal-the-best QCs 

There is an ideal value or target for a QC. For example, the position 

of the output member of a mechanism should be at a desired point.  

• Smaller-the-better QCs 

A smaller QC is better than a larger one, for example, the fuel con-

sumption, the noise level of an engine, and the number of failures.  

•  Larger-the-better QCs 

A larger QC is better than a smaller one. For example, we prefer 

larger yield and higher efficiency.  

Since the average  and the standard deviation of a QC are two major 

concerns, both of them appear in the objective function of RD. There 

are many RD models. The one below is commonly used for nominal-

the-best QCs.  

 

Find design variable d  

To minimize 2 2

1 2[ ( , ) ] ( , )Y Yw m wµ σ− +d X d X  

Subject to 

Constraints 

 

In the above model, Y  is the QC, m  is its target. Yµ  and Yσ  are 

the mean and standard deviation of Y , respectively. They are func-

tions of design variables d  and random variables X .  1w  and 2w  are 

the weights and 1 2 1w w+ = . 

The solution to the above model may bring the average QC Yµ  to 

its target and reduce the variation in Y , represented by Yσ . 

Example 1.4 

In Example 1.2, we evaluated the robustness of two designs for a 

ball-launching device. Now we perform RD to find the best robust 

design for the device. The intended function of the device is to launch 

a ball to a target point. The function is realized by adjusting the initial 

velocity v  and its direction expressed by the angle θ . Since both of 
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the variables are random, the vector of random variables are 

( , )v θ=X , and the design variables are their nominal values (means) 

( , )V θµ µ=d . 

The QC is the horizontal distance r from the origin to the point 

where the ball lands. Let the QC be Y r= , and assume that the range 

of θ  is [0 , 40 ]� �

 and that the target is 25m =  m.  

The RD model is then formulated as  

 

2 2

1 2
( , )

[ 25]

subject to

min

0 40

V
Y Yw w

θµ µ

θ

µ σ

µ

=
 − +


 ≤ ≤

d

� �

 

 

For this specific problem, the values of 1w  and 2w  do not matter.   

For this simple problem, to avoid using an optimization algorithm, 

we find the solution with a graphical method.  

We at first bring the mean of the QC to its target. This gives  

 25 0Yµ − =  

Using the equation for Yµ  obtained in Example 1.2, we have 

 
2 sin 2

25 0V

gravg

θµ µ
− =  

which yields 

 
25

sin 2
v

g

θ

µ
µ

=  

From Example 1.2, we also know 

 
2 sin 2v

Y

grav
g

θµ µ
µ =  

 
2 2 22

[sin(2 ) ] [ cos(2 ) ]v
Y v v

gravg
θ θ θ

µ
σ µ σ µ µ σ= +  

 Using the above three equations, by changing θµ  over [0 ,40 ]
� �

, 

we obtain design results that are tabulated in Table 1.3. 
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Table 1.3. RD Results 

 

Design 
θµ  (°) vµ  (m/s) Yµ  (m) Yσ  (m) 

Design 1 10 26.7780 25.0 0.2405 

Design 2 15 22.1472 25.0 0.1528 

Design 3 20 19.5331 25.0 0.1071 

Design 4 25 17.8928 25.0 0.0784 

Design 5 30 16.8283 25.0 0.0585 

Design 6 35 16.1552 25.0 0.0443 

Design 7 40 15.7808 25.0 0.0352 

 

All the designs can bring the QC to its target with 25Yµ =  m, but 

they produce different standard deviations Yσ  of the QC. As shown 

in the table and Fig. 1.10, as θµ  increases, Yσ  decreases. Design 7 is 

the best because it brings the mean QC to its target and also produces 

the minimum standard deviation of the QC. 

 

 

Fig. 1.10. The means and standard deviations of the QC 
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1.6 Organization of the Book 

In addition to this introduction chapter, this book consists of three 

parts. Part one is for uncertainty modeling. It has just three chapters, 

which focus on modeling uncertainty with the probability theory. Ba-

sics of how to use the probability theory for qualifying uncertainty 

will be discussed from an engineer’s aspect. 

Part two is for probabilistic analysis and consists of Chapters 5 

through 9. It concentrates on evaluating the effects of uncertainty of 

model input on model output. Reliability analysis and robustness 
analysis are the focus. 

Part three deals with probabilistic design, particularly reliability-

based design and robust design. Since both design methodologies are 

based on optimization, the first chapter, Chapter 10, in this part, is 

dedicated to a brief introduction to optimization. Reliability-based de-

sign and robust design are then discussed in Chapters 11 and 12. 

1.7 Conclusions 

In this tutorial-style introduction, we have reviewed the general engi-

neering design process and introduced important concepts of uncer-

tainty, including reliability and robustness. We also discussed two 

basic probabilistic design methodologies – reliability-based design 

and robust design. Below are listed some of the important points we 

have presented. 

• Uncertainty is the gap between the present state of knowledge 
and the complete knowledge.  

• An uncertain variable is commonly treated as a random variable, 
which can be fully represented by its cumulative distribution 

function (CDF).  

• The effects of uncertainty include quality loss, risk, large varia-
tion, low customer satisfaction, and high cost. 

• Uncertainty should be treated as a core element in engineering 
design. 

• Reliability and robustness are two primary measures of product 
performance in the presence of uncertainty. The former is the 
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probability of no failure and the latter is the insensitivity to un-

certainty. 

• Reliability-based design and robust design make a product per-
form its intended function at a desired level of probability and 

make the product performance stable under uncertainty, respec-

tively. 

Probabilistic engineering design can be used in all stages of engi-

neering design, including the stages of conceptual design, preliminary 

design, and detail design. Since probabilistic design has benefits on 

product reliability, robustness, safety, quality, and customer satisfac-

tion, engineers should have sufficient knowledge about probabilistic 

design.   

 


