2-16. A 5 kg ball is thrown with an initial speed of v_A at angle of 45°, and $v_A \sim N(10,1^2)$ m/s. Determine the distributions of the time for the ball to reach its highest point B and its speed at B.

Solution:

Impulse and momentum

$$m(v_y)_A + \sum \int F_y dt = m(v_y)_B$$

$$mv_A \sin \theta - mgt_B = 0$$

$$t_B = \frac{v_A \sin \theta}{g}$$

$$m(v_x)_A + \sum \int F_x dt = m(v_x)_B$$

$$mv_A \cos \theta + 0 = mv_B$$

$$v_B = v_A \cos \theta$$

$$\mu_{t_B} = \frac{\mu_{v_A} \sin \theta}{g} = 0.72 \text{ s}$$

$$\sigma_{t_B} = \frac{\sigma_{v_A} \sin \theta}{g} = 0.07 \text{ s}$$

Thus,

and

$$\mu_{v_B} = \mu_{v_A} \cos \theta = 7.07 \text{ m/s}$$

$$\sigma_{v_B} = \sigma_{v_A} \cos \theta = 0.71 \text{ m/s}$$

Therefore, $t_B \sim N(0.72, 0.07^2)$ s and $v_B \sim N(7.07, 0.71^2)$ m/s.

Ans.