
2-4. The mass of the crate is normally distributed with $m \sim N(100, 5^2)$ kg. The cart starts from rest with constant acceleration. When t = 8 s, the speed of the cart reaches 50 km/h. Find the probability that the crate will slip. Assume the coefficient of static friction between the cart and the crate is $\mu_s = 0.2$.

Solve for F_f :

$$\Sigma F_x = ma_x$$
$$F_f = ma$$

The crate will slip if $F_f > F_{\max}$, and $F_{\max} = \mu_s N = \mu_s mg$

$$Y = F_{\max} - F_f = \mu_s mg - ma$$

$$\mu_Y = \mu_{F\max} - \mu_{F_f} = \mu_s \mu_m g - \mu_m a = 22.59 \text{ N}$$

$$\sigma_Y = \sqrt{\left(\mu_s \sigma_m g\right)^2 + \left(-\sigma_m a\right)^2} = 13.10 \text{ N}$$

$$P(F_f > F_{\max}) = P(Y < 0)$$

$$= \Phi\left(\frac{0 - \mu_Y}{\sigma_Y}\right)$$

$$= 0.042$$

Ans.

Let