Conceptual Questions

Please put your answers in the following table.

1	2	3	4	5	6	7	8

- 1. Which statement is not true about a standard deviation?
 - A) It is always non-negative.
 - B) It represents the dispersion around the mean value.
 - C) It can be negative.
 - D) The larger is the standard deviation, the higher is uncertainty.
- 2. Two normal distributions are shown below. Which statement is true?

A) $\sigma_1 > \sigma_2$

B) $\sigma_1 < \sigma_2$

C)
$$\sigma_1 = \sigma_2$$

- D) Cannot determine
- 3. The actual values of a force (N) acting on a rigid body are given below.

105.4
118.3
77.4
108.6
103.2
86.9
95.7
103.4
135.8
127.7
86.5
130.3
107.3
99.4
107.1

The average of the force is

- A) 100.0 N
- B) 210.0 N
- C) 106.2 N
- D) 25.4 N

4. For problem 3, the standard deviation of the force is

- A) 10.1 N
- B) 0.0 N
- C) 103.2 N
- D) 16.56 N
- 5. The mass of a particle is m = 10 kg. The particle is subjected to a force that is normally distributed. Knowing $F \sim N(\mu_F, \sigma_F^2)$ where $\mu_F = 10.0$ N and $\sigma_F = 1.0$ N, determine the mean and standard deviation of the acceleration of the particle.
 - A) $\mu_a = 1.0 \text{ m/s}^2$, $\sigma_a = 0.1 \text{ m/s}^2$
 - B) $\mu_a = 1.0 \text{ m/s}^2$, $\sigma_a = 1.0 \text{ m/s}^2$
 - C) $\mu_a = 1.0 \text{ m/s}^2$, $\sigma_a = 0 \text{ m/s}^2$
 - D) $\mu_a = 1.0 \text{ m/s}^2$, $\sigma_a = 0.01 \text{ m/s}^2$
- 6. For problem 5, what is the probability that the force is less than 12 N or $Pr\{F < 12 N\}$? A) 0
 - B) 50%
 - C) 97.72%
 - D) 86.5%
- 7. A crate is subject to (Case 1) a random force $F_1 \sim (10,1^2)$ N, and (Case 2): two independent random forces $F_1 \sim (10,1^2)$ N and $F_2 \sim (10,1^2)$ N. Neglect friction. Which of the following statements is not true?

- A) The average acceleration of the crate in Case 1 is 1 m/s.
 - B) The average acceleration of the crate in Case 1 is less than that in Case 2.
 - C) The average acceleration of the crate in Case 2 is non-zero.

- D) The average acceleration of the crate in Case 2 is zero.
- 8. For the above problem, which of the following statements is not true?
 - A) The standard deviation of the acceleration in Case 1 is less than that in Case 2.
 - B) The standard deviation of the acceleration in Case 2 is zero.
 - C) The standard deviation of the acceleration in Case 1 is greater than zero.
 - D) The standard deviation of the acceleration in Case 2 is greater than zero.