2-10. A bullet strikes a resting wooden block at a horizontal speed v_1 and exits the block at speed v_2 . v_1 and v_2 are measured and treated as independent random variables due to the measurement uncertainty and follow normal distributions $v_1 \sim N(1500, 15^2)$ m/s and $v_2 \sim N(300, 3^2)$ m/s. The mass of the bullet and the wooden block are $m_1 = 0.1$ kg and $m_2 = 10$ kg, respectively. How long will the block slide on the floor, after the bullet emerges, before it comes to rest again? The coefficient of kinetic friction between the block and floor is $\mu_k = 0.3$.

Solution: $t \sim N(4.08, 0.052^2)$ s

