
3-2. A disk rotates at $\omega_0 = 2$ rad/s and a constant angular acceleration of $\alpha = 2$ rad/s². The distance between points A and O follows a normal distribution $d \sim N(2,0.2^2)$ ft. Determine the distributions of both normal and tangential acceleration components at point A after the disk undergoes 5 revolutions.

Solutions: $a_t \sim N(4, 0.4^2) \text{ ft/s}^2$ and $a_n \sim N(259.5, 25.9^2) \text{ ft/s}^2$

