Deal with Uncertainty in Dynamics

MISSOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY

Outline

- Uncertainty in dynamics
- Why consider uncertainty
- Basics of uncertainty
- Uncertainty analysis in dynamics
- Examples
- Applications

Uncertainty in Dynamics

- Example: given $\omega_{AB} = \text{const} = 2 \text{ rad/s}$, find v_c and a_c
- We found $v_c = 4$ ft/s and $a_c = 13.86$ ft/s²
- Everything is modeled perfectly.
- In reality, ω_{AB} , l_{AB} , and l_{BC} are all random.
- So are the solutions.

 $-v_c$ will fluctuate around 4 ft/s.

3 ft

30

Where Does Uncertainty Come From?

- Manufacturing impression
 - Dimensions of a mechanism
 - Material properties
- Environment
 - Loading
 - Temperature
 - Different users

Why Consider Uncertainty?

- We know the true solution.
- We know the effect of uncertainty.
- We can make more reliable decisions.
 - If we know uncertainty in the traffic to the airport, we can better plan our trip and have lower chance of missing flights.

How Do We Model Uncertainty?

- Measure $X = \omega_{AB}$ ten times, we get
- X = (2.17, 1.82, 2.0, 1.89, 2.06, 1.88, 2.10, 2.15) rad/s

- How do we use the samples?
- Average $\mu = \frac{1}{10} (2.17 + 1.82 + \dots + 2.10 + 2.15) = \frac{1}{10} \sum X_i = 2.04$ rad/s (use Excel)

3 ft

How Do We Measure the Dispersion?

- X = (2.17, 1.82, 2.0, 1.89, 2.06, 1.88, 2.10, 2.15)
- We could use $X_i \mu$ and $\frac{1}{N} \sum (X_i \mu)$, N = 10
- But $\frac{1}{N} \sum (X_i \mu) = 0.$
- To avoid 0, we use $\frac{1}{N}\sum (X_i \mu)^2$; to have the same unit as

$$\overline{X}$$
, we use $\sigma = \sqrt{\frac{1}{N}\sum(X_i - \mu)^2}$

• We actually use

Standard deviation:
$$\sigma = \sqrt{\frac{1}{N-1}\sum (X_i - \mu)^2}$$
.

• Now we have $\sigma = 0.16$ rad/s for $\mu = 2.04$ rad/s. (Use Excel)

More about Standard Deviation (std)

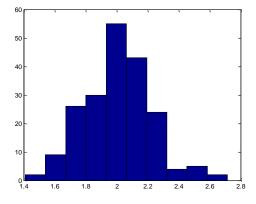
- It indicates how data spread around the mean.
- It is always non-negative.
- High std means
 - High dispersion
 - High uncertainty
 - High risk

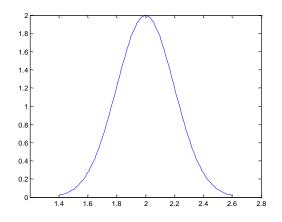
Probability Distribution

• With more samples, we can draw a histogram.

- If y-axis is frequency and the number of samples is infinity, we get a probability density function (PDF) f(x).
- The probability of $a \le X \le b$.

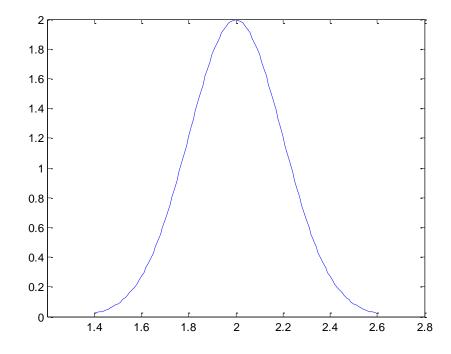
$$\Pr\{a \le X \le b\} = \int_a^b f(x) dx$$





Normal Distribution

- $X \sim N(\mu, \sigma^2)$
- F(x) = Pr{X < x} is called cumulative distribution function (CDF)
- $\Pr\{a < X < b\} = F(b) F(a)$
- $\Pr{X > x} = 1 \Pr{X < x} = 1 F(x)$



How to Calculate F(x)?

- Use Excel
 - NORMDIST(x,mean,std,cumulative)
 - cumulative=true

Example 1

- Average speeds (mph) of 20 drivers from S&T to STL airport were recoded.
- The average speed is normally distributed.
 - Mean =? Std = ?
 - What is the probability that a person gets to the airport in 2 hrs if d = 120 mile?

1	62.2
2	58.2
3	70.9
4	64.9
5	68.3
6	67.9
7	67.1
8	63.0
9	63.2
10	65.5
11	62.3
12	62.8
13	72.9
14	67.2
15	62.1
16	66.8
17	62.5
18	61.6
19	66.0
20	70.8

Solution: Use Excel

- *X* = average speed
- $X \sim N(\mu, \sigma^2)$ $-\mu = 65.3 \text{ mph by AVERAGE}$ $-\sigma = 3.72 \text{ mph by STDEV}$
- For $t \le 2$ hr, $X \ge \frac{120}{2} = 60$ mph
- $\Pr\{X \ge 60\} = 1 \Pr\{X < 60\}$
- = 1 NORMDIST(60, 65.3, 3.72, true) = 0.92

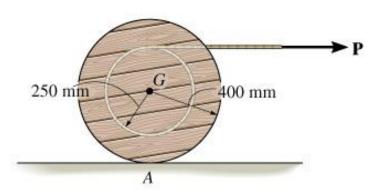
More Than One Random Variables

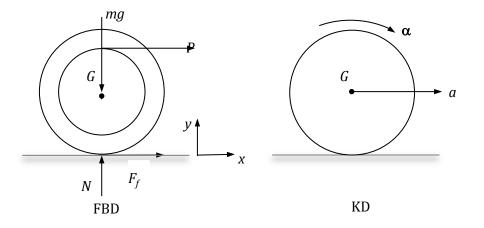
- $X_i \sim N(\mu_i, \sigma_i^2)$
- $Y = c_0 + c_1 X_1 + c_2 X_2 + \dots + c_n X_n$
- c_i ($i = 1, 2, \dots, n$) are constants.
- Then $Y \sim N(\mu_Y, \sigma_Y^2)$
- $\mu_Y = c_0 + c_1 \mu_1 + c_2 \mu_2 + \dots + c_n \mu_n$

•
$$\sigma_Y = \sqrt{c_1^2 \sigma_1^2 + c_2^2 \sigma_2^2 + \dots + c_n^2 \sigma_n^2}$$

Example 2

The spool has a mass of m = 100 kg and a radius of gyration k_g = 0.3 m. It is subjected to force P= 1000 N. If the coefficient of static friction at A is μ_s = 0.15, determine if the spool slips at point A.





Assume no slipping:
$$a = r\alpha$$
 (1)

$$\Sigma F_x = ma_{Gx} : P + F_f = ma$$
(2)

$$\Sigma F_y = ma_{Gy} : N - mg = 0$$
(3)

$$\Sigma M_G = I_G \alpha = Pr_p - F_f r = mR_g^2 \alpha$$
(4)

where $r_p = 0.25 \text{ m}$, r = 0.4 m

Solving (1)—(4):

$$F_{f} = P \left[\frac{r(r+r_{p})}{R_{g}^{2}+r^{2}} - 1 \right] = 1000 \left[\frac{0.4(0.4+0.25)}{0.3^{2}+0.4^{2}} - 1 \right] = 40.0N$$
($F_{f} = c_{2}P$ where $c_{2} = 0.04$; we'll use it later)
N=981.0 N
 $F_{max} = \mu_{s}N = 0.15(981.0) = 147.15$ N
($F_{max} = c_{1}\mu_{s}$ where $c_{1} = 981$; we'll use it later)
 $F_{f} = 40.0 N < maxF = 147.15N$

The assumption is OK, and the spool will not slip.

When Consider Uncertainty

• If $\mu_s \sim N(\mu_1, \sigma_1^2) = N(0.15, 0.03^2)$

 $P \sim N(\mu_2, \sigma_2^2) = N(1000, 140^2) N$

• What is the probability that the spool will slip ?

Let
$$Y = F_{max} - F_f = c_1 \mu_s - c_2 P$$

If *Y*<0, the spool will slip.

$$\mu_Y = \mu_{F_{max}} - \mu_{F_f} = 147.15 - 40 = 107.15$$
N

$$\sigma_Y = \sqrt{c_1^2 \sigma_{F_{max}}^2 + c_2^2 \sigma_{F_{\mu}}^2} = \sqrt{981^2 (0.03^2) + (-0.04)^2 (140^2)}$$

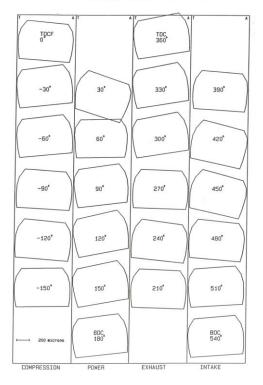
=29.9581 N

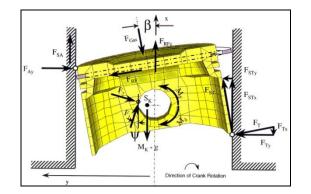
 $Pr{Slipping} = Pr{Y<0} = F(0, 107.15, 29.9581, True)$ $= 1.74 \times 10^{-4} \text{ (Use Excel)}$

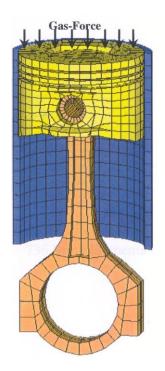
Engine Robust Design

minimize $f(\mu_{noise}, \sigma_{noise})$

Piston (Skirt) Motion Summary

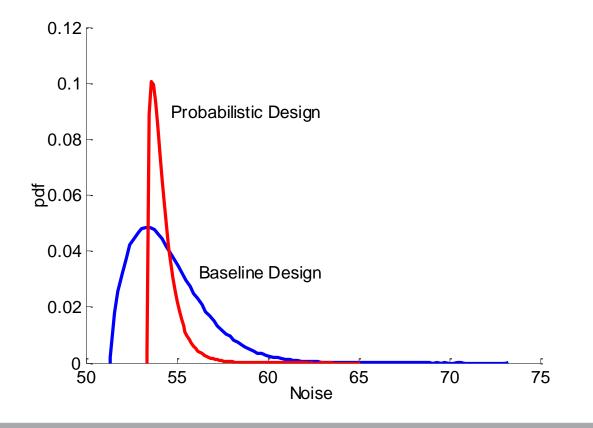






Result Analysis

- The mean noise reduced by 0.5%.
- The standard deviation reduced by 62.5%.



Assignment

• On Blackboard.