Deal with Uncertainty in Dynamics

MISSOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY

Outline

- Uncertainty in dynamics
- Why consider uncertainty
- Basics of uncertainty
- Uncertainty analysis in dynamics
- Examples
- Applications

Uncertainty in Dynamics

- Example: given ω_{AB} = const = 2 rad/s, find v_c and a_c
- We found $v_c = 4$ ft/s and $a_c = 13.86$ ft/s²
- Everything is modeled perfectly.
- In reality, ω_{AB} , l_{AB} , and l_{BC} are all random.
- So are the solutions.

 $-v_c$ will fluctuate around 4 ft/s.

 3_{ft}

 $30[°]$

Where Does Uncertainty Come From?

- Manufacturing impression
	- Dimensions of a mechanism
	- Material properties
- Environment
	- Loading
	- Temperature
	- Different users

Why Consider Uncertainty?

- We know the true solution.
- We know the effect of uncertainty.
- We can make more reliable decisions.
	- If we know uncertainty in the traffic to the airport, we can better plan our trip and have lower chance of missing flights.

How Do We Model Uncertainty?

- Measure $X = \omega_{AB}$ ten times, we get
- $X = (2.17, 1.82, 2.0, 1.89, 2.06, 1.88, 2.10,$ 2.15) rad/s

- How do we use the samples?
- Average $\mu =$ 1 10 $(2.17+1.82+\cdots+2.10+$ $(2.15)=\frac{1}{10}$ 10 $\sum X_i = 2.04$ rad/s (use Excel)

 3_{ft}

How Do We Measure the Dispersion?

- $X = (2.17, 1.82, 2.0, 1.89, 2.06, 1.88, 2.10, 2.15)$
- We could use $X_i \mu$ and $\frac{1}{N} \sum (X_i \mu)$, $N = 10$
- But $\frac{1}{N}$ $\frac{1}{N}\sum (X_i - \mu) = 0.$
- To avoid 0, we use $\frac{1}{N}$ $\frac{1}{N}\sum (X_i - \mu)^2$; to have the same unit as

$$
\bar{X}, \text{ we use } \sigma = \sqrt{\frac{1}{N} \sum (X_i - \mu)^2}
$$

We actually use

Standard deviation:
$$
\sigma = \sqrt{\frac{1}{N-1} \sum (X_i - \mu)^2}
$$
.

Now we have $\sigma = 0.16$ rad/s for $\mu = 2.04$ rad/s. (Use Excel)

More about Standard Deviation (std)

- It indicates how data spread around the mean.
- It is always non-negative.
- High std means
	- High dispersion
	- High uncertainty
	- High risk

Probability Distribution

• With more samples, we can draw a histogram.

- If y-axis is frequency and the number of samples is infinity, we get a probability density function (PDF) $f(x)$.
- The probability of $a \le X \le b$.

 $Pr\{a \leq X \leq b\} = \int_{a}^{b} f(x) dx$ \overline{a}

Normal Distribution

- $X \sim N(\mu, \sigma^2)$
- $F(x) = Pr{X < x}$ is called cumulative distribution function (CDF)
- $Pr{a < X < b} = F(b) F(a)$
- $Pr{X > x} =$ $1 - Pr{X < x} = 1 - F(x)$

How to Calculate $F(x)$?

- Use Excel
	- NORMDIST(x,mean,std,cumulative)
	- cumulative=true

Example 1

- Average speeds (mph) of 20 drivers from S&T to STL airport were recoded.
- The average speed is normally distributed.
	- $-$ Mean =? Std = ?
	- What is the probability that a person gets to the airport in 2 hrs if $d = 120$ mile?

Solution: Use Excel

- X = average speed
- $X \sim N(\mu, \sigma^2)$ $-\mu = 65.3$ mph by AVERAGE $-\sigma$ = 3.72 mph by STDEV
- For $t \leq 2$ hr, $X \geq$ 120 2 $= 60$ mph
- $Pr{X \ge 60} = 1 Pr{X < 60}$
- $= 1 NORMDIST(60, 65.3, 3.72, true) = 0.92$

More Than One Random Variables

- $X_i \sim N(\mu_i, \sigma_i^2)$
- $Y = c_0 + c_1 X_1 + c_2 X_2 + \cdots + c_n X_n$
- c_i $(i = 1, 2, \cdots, n)$ are constants.
- Then $Y \sim N(\mu_Y, \sigma_Y^2)$
- $\mu_V = c_0 + c_1 \mu_1 + c_2 \mu_2 + \cdots + c_n \mu_n$

•
$$
\sigma_Y = \sqrt{c_1^2 \sigma_1^2 + c_2^2 \sigma_2^2 + \dots + c_n^2 \sigma_n^2}
$$

Example 2

• The spool has a mass of m = 100 kg and a radius of gyration $k_q =$ 0.3 m . It is subjected to force $P=$ 1000 N. If the coefficient of static friction at *A* is $\mu_s =$ 0.15, determine if the spool slips at point A.

Assume no slipping:
$$
a = r\alpha
$$
 (1)

$$
\Sigma F_x = ma_{Gx} : P + F_f = ma
$$
 (2)

$$
\Sigma F_y = ma_{Gy} : N - mg = 0
$$
 (3)

$$
\Sigma M_G = I_G \alpha = Pr_p - F_f r = mR_g^2 \alpha
$$
 (4)
where $r = 0.25$ m $r = 0.4$ m

where $r_p = 0.25$ m, $r = 0.4$ m

Solving (1)–(4):
\n
$$
F_f = P\left[\frac{r(r+r_p)}{R_g^2 + r^2} - 1\right] = 1000 \left[\frac{0.4(0.4 + 0.25)}{0.3^2 + 0.4^2} - 1\right] = 40.0 N
$$
\n($F_f = c_2 P$ where c_2 = 0.04; we'll use it later)
\nN=981.0 *N*
\n
$$
F_{max} = \mu_s N = 0.15(981.0) = 147.15 N
$$
\n($F_{max} = c_1 \mu_s$ where c_1 = 981; we'll use it later)
\n
$$
F_f = 40.0 N < maxF = 147.15 N
$$

The assumption is OK, and the spool will not slip.

When Consider Uncertainty

• If $\mu_s \sim N(\mu_1, \sigma_1^2) = N(0.15, 0.03^2)$

 $P \sim N(\mu_2, \sigma_2^2) = N(1000, 140^2) N$

• What is the probability that the spool will slip ?

Let
$$
Y = F_{max} - F_f = c_1 \mu_s - c_2 P
$$

If $Y<0$, the spool will slip.

$$
\mu_Y = \mu_{F_{max}} - \mu_{F_f} = 147.15 - 40 = 107.15N
$$

$$
\sigma_Y = \sqrt{c_1^2 \sigma_{F_{max}}^2 + c_2^2 \sigma_{F_{\mu}}^2} = \sqrt{981^2 (0.03^2) + (-0.04)^2 (140^2)}
$$

 $=$ 29.9581 N

 $Pr{Slipping} = Pr{Y < 0} = F(0, 107.15, 29.9581, True)$ $=1.74\times10^{-4}$ (Use Excel)

Engine Robust Design

Result Analysis

- The mean noise reduced by 0.5%.
- The standard deviation reduced by 62.5%.

Assignment

• On Blackboard.