18. A truss undergoes a force $P \sim N(20, 2^2)$ kN. The diamter of rod *BC* is d = 0.2 m. If the yield stress of rod *BC* is $S_y \sim N(10, 2^2)$ MPa, and *P* and S_y are independent, determine the probability of failure using the First Order Second Moment Method.

Solution

Consider the force equilibrium of rod AB and rod AC as shown in the figure below

According to the force equilibrium along with x axis,

$$-R_c \cos 60^\circ + P = 0$$

Then

$$R_C = \frac{P}{\cos 60^\circ} = 2P$$

Thus the compressible stress applied to rod *BC* is

$$S = \frac{R_C}{A_{BC}} = \frac{2P}{\frac{\pi d^2}{4}} = \frac{2P}{\frac{\pi (0.2)^2}{4}} = 63.66P$$

The limit-state function is actual stress subtracted from the yield strength. Failure occurs when Y < 0.

$$Y = g(\mathbf{X}) = S_y - 63.66P = S_y - 63.66P$$

where $\mathbf{X} = (S_y, P)$.

Using FOSM, we have

$$\mu_{Y} = g(\mathbf{\mu}_{X}) = \mu_{S_{Y}} - 63.66\mu_{P} = 10(10^{6}) - 63.66(20)(10^{3}) = 8.727(10^{6}) \text{ Pa}$$

$$\sigma_{Y} = \sqrt{\left(\frac{\partial g}{\partial S_{Y}}\Big|_{\mathbf{\mu}_{X}}\sigma_{S_{Y}}\right)^{2} + \left(\frac{\partial g}{\partial P}\Big|_{\mathbf{\mu}_{X}}\sigma_{P}\right)^{2}}$$

$$= \sqrt{\left((-1)\sigma_{S_{Y}}\right)^{2} + (63.66\sigma_{P})^{2}}$$

$$= \sqrt{\left((-1)(2)(10^{6})\right)^{2} + (63.66(2)(10^{3}))^{2}}$$

$$= 2.004(10^{6}) \text{ Pa}$$

The probability of failure is then given by

$$p_f = \Phi\left(\frac{-\mu_Y}{\sigma_Y}\right) = \Phi\left(\frac{-8.727(10^6)}{2.004(10^6)}\right) = 6.67(10^{-6})$$
 Ans.