
33. A bar is subjected to a tensional force 𝑃~𝑁(1000, 1002)  lbf. The bar includes a round cross section 

with diameter 𝑑1 = 1  in  and length 𝑙1~𝑁(3, 0.032)  in . And it has a tapered portion of length 

𝑙2~𝑁(3, 0.032)  in and a diameter 𝑑2 = 2  in of the end circular cross section. The modulus of elasticity 

is 𝐸 = 30  Mpsi. If 𝑃 and 𝑙  are independent, determine the mean and standard deviation of total axial 

elongation using the First Order Second Moment Method. Note that the elongation of tapered portion is 
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Solution 

For the section with constant diameter, the axial elongation is  
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For the tapered portion, the elongation is given by 
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Thus the total axial elongation is expressed as  
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Let  

𝑔(X) = 𝛿𝑡 = 4.2441(10−8)𝑃𝑙1 + 2.1221(10−8)𝑃𝑙2 

where 𝐗=(𝑃, 𝑙1, 𝑙2). 

Using FOSM, we have 
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= 1.9099(10−4)  in                                                                    
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= 1.9152(10−5)  in                                                                                                       

Ans. 

 

 


