
47. An axial force 𝐹~𝑁(8000, 4002)  lbf is applied to a round Euler column with a length of 𝑙~𝑁(2,

0.012)  in. The ends of column are pined as shown in the figure. The modulus of elasticity is 𝐸 = 200 

kpsi. If the maximum probability of failure is designed to be 𝑝𝑓 = 10
−5, determine the minimum diameter 

of the column using the First Order Second Moment Method. Note that 𝐹 and 𝑙 are independent. 

 

Solution 

According to the theory of Euler column, the critical load for unstable bending is 
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where 𝐶 = 1, depending on the end conditions shown in the figure. 

The limit-state function is the actual load of the column subtracted from the critical load. Failure occurs 

when 𝑌 < 0. 
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where 𝐗=(𝑙, 𝐹). 

Using FOSM, we have 
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The probability of failure is then given by 
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Solving for 𝑑 yields 

𝑑 = 0.797 in 

Thus 𝑑 = 0.80 in can be used.                                                                                                                    Ans. 


