60. A torsion bar *AB* fixed at *A* is simply supported at *B* and is connected to a cantilever *BC* as shown in the figure. A force $F \sim N(1500, 100^2)$ N is applied at *C*. Bar *AB* has a spring rate of $k_1 \sim (3 \times 10^5, (3 \times 10^4)^2)$ N·m/rad and a length of $l_1 \sim N(0.8, 0.001^2)$ m. Cantilever *AB* has a spring rate of $k_2 \sim (5 \times 10^4, (5 \times 10^3)^2)$ N/m. If the allowable deflection at *C* is $\delta_a = 0.05$ m and the maximum probability of failure is designed to be $p_f = 10^{-5}$, determine the maximum length of *BC* using First Order Second Moment Method. Assume that *F*, l_1 and l_2 are independent.

Answer: $l_{BC} = 0.883 \text{ m}$

