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Uncertainty in Mechanical Components

• A simply-supported beam has a diameter of 
1.25 in. The deflection at 𝑥 = 10 in should be 
less than δ =0.00375 in. Can the requirement 
be met?

• Everything is modeled perfectly.

• In reality, the forces and dimensions are all 
random.

• So is the deflection. 
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Where Does Uncertainty Come From? 

• Manufacturing impression

– Dimensions of a component

– Material properties

• Environment

– Loading

– Temperature

– Different users
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Why Consider Uncertainty?

• We know the true solution.

• We know the effect of uncertainty.

• We can make more reliable decisions.
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• We use probability distributions to model 
parameters with uncertainty.

How Do We Model Uncertainty?
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Probability Distribution

• With more samples, we can draw 
a histogram.
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• If y-axis is frequency and the 
number of samples is infinity, we 
get a probability density function 
(PDF) 𝑓(𝑥). 
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• The probability of 𝑎 ≤ 𝑋 ≤ 𝑏.

Pr 𝑎 ≤ 𝑋 ≤ 𝑏 =  𝑎
𝑏
𝑓 𝑥 𝑑𝑥



Normal Distribution

• 𝑋~𝑁(𝜇, 𝜎2)

• 𝐹 𝑥 = Pr 𝑋 < 𝑥 :  
cumulative distribution 
function (CDF)

• Pr 𝑎 < 𝑋 < 𝑏 = 𝐹 𝑏 −
𝐹 𝑎

• Pr 𝑋 < 𝑥 =
𝑥−𝜇𝑌

𝜎𝑌

• Pr 𝑋 > 𝑥 = 1 − Pr 𝑋 <

8

1.4 1.6 1.8 2 2.2 2.4 2.6 2.8
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2



More about Standard Deviation 𝜎 (std)

• It indicates how data spread around the mean.

• It is always non-negative.

• High std means

– High dispersion

– High uncertainty

– High risk
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More Than One Random Variables

• If 

– 𝑋𝑖~𝑁 𝜇𝑖 , 𝜎𝑖
2

– 𝑋𝑖 𝑖 = 1,2,⋯ , 𝑛 are independent

– 𝑌 = 𝑐0 + 𝑐1𝑋1 + 𝑐2𝑋2 + ⋯+ 𝑐𝑛𝑋𝑛

– 𝑐𝑖 𝑖 = 1,2,⋯ , 𝑛 are constants.

• Then

– 𝑌~𝑁 𝜇𝑌, 𝜎𝑌
2

– 𝜇𝑌 = 𝑐0 + 𝑐1𝜇1 + 𝑐2𝜇2 + ⋯+ 𝑐𝑛𝜇𝑛

– 𝜎𝑌 = 𝑐1
2𝜎1

2 + 𝑐2
2𝜎2

2 + ⋯+ 𝑐𝑛
2𝜎𝑛

2

10



Reliability
• Reliability is the ability of a component to 

perform its intended function without failure.

• Reliability is measure by the probability of such 
ability.

• 𝑅 = Pr 𝑔 𝐗 > 0}
– 𝐗: random variables

– 𝑔 ∙ : limit-state function

– If 𝑔 𝐗 <0, a failure occurs

• Probability of failure 𝑝𝑓 = Pr 𝑔 𝐗 < 0 = 1 − 𝑅
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First Order Second Moment Method (FOSM)
• Assume 𝑋𝑖~𝑁 𝜇𝑖 , 𝜎𝑖

2 and are independent
• First order Taylor expansion

Y=𝑔 𝐗 ≈ 𝑔 𝛍 +  𝑖=1
𝑛 𝜕𝑔

𝜕𝑋𝑖
(𝑋𝑖 − 𝜇𝑖)

𝛍 = (𝜇1, 𝜇2, ⋯ , 𝜇𝑛)

• 𝑌~𝑁 𝜇𝑌, 𝜎𝑌
2 , 𝜇𝑌 = 𝑔 𝛍 , 𝜎𝑌

2 =  𝑖=1
𝑛 𝜕𝑔

𝜕𝑋𝑖

2

𝜎𝑖
2

• 𝑝𝑓 = Pr 𝑔 𝐗 < 0 = 
−𝜇𝑌

𝜎𝑌
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Monte Carlo Simulation (MCS)*
A sampling-based simulation method
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*This topic is optional.
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Step 1: Sampling on random variables

• Generate samples of input random variables 
according to their distributions.

• For example, for 𝑋𝑖~𝑁 𝜇𝑖 , 𝜎𝑖
2 , samples can 

be generated by Matlab.

– Matlab normrnd(𝜇𝑖, 𝜎𝑖 , 1, 𝑁) produces a row 
vector of 𝑁 random samples.

– Excel can also be used.



Step 2: Obtain Samples of Output

• Suppose N sets of random variables have been 
generated 

𝐱𝑖 = (𝑥𝑖1, 𝑥𝑖2, ⋯ , 𝑥𝑖𝑛), 𝑖 = 1,2,⋯ ,𝑁

𝑁 is the number of simulations

• Then samples of output s are calculated a

𝑦𝑖 = 𝑔 𝐱𝑖



Step 3: Statistic Analysis on output

• Mean 𝜇𝑌 =
1

𝑁
 𝑖=1

𝑁 𝑦𝑖

• Standard deviation 𝜎𝑌 =
1

𝑁−1
 𝑖=1

𝑁 𝑦𝑖 − 𝜇𝑖
2

• The probability of failure 𝑝𝑓 =
𝑁𝑓

𝑁
𝑁𝑓 is the number of failures.
𝑁𝑓 = number of 𝑦𝑖<0, 𝑖 = 1,2,⋯ ,𝑁



FORM vs MCS

• FORM is more efficient

• FORM may not be accurate when a limit-state 
function is highly nonlinear

• MCS is very accurate if the sample size is 
sufficiently large

• MCS is not efficient
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Example - FOSM

• 𝐿 = 100 in, 𝑡 = 2 in, 𝑤 = 4 in, 𝐸 = 30106 psi

• 𝐗 = (𝑃𝑥, 𝑃𝑦), 𝑃𝑥~𝑁 500, 602 lb, 𝑃𝑦~𝑁 1000, 1002

lb, 𝑃𝑥 and 𝑃𝑦 are independent

• Allowable deflection 𝐷0 = 3 in

• 𝑌 = 𝑔 𝐗 = 𝐷0 −
4𝐿3

𝐸𝑤𝑡

𝑃𝑥

𝑤2

2
+

𝑃𝑦

𝑡2

2

• 𝑝𝑓 = Pr 𝑌 = 𝑔 𝐗 < 0}
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Example - FOSM

• 𝜇𝑌 = 𝑔 𝛍 = 𝐷0 −
4𝐿3

𝐸𝑤𝑡

𝑃𝑥

𝑤2

2
+

𝑃𝑦

𝑡2

2
= 3 −

4 1003

30106 4 2

500

42

2
+

1000

22

2
= 0.6708

•
𝜕𝑔

𝜕𝑃𝑥
= −

4𝐿3

𝐸𝑤𝑡

𝑃𝑥

𝑤4

1

𝐴
= −3.7268𝑒 − 03

•
𝜕𝑔

𝜕𝑃𝑦
= −

4𝐿3

𝐸𝑤𝑡

𝑃𝑦

𝑡4
1

𝐴
= −4.6585𝑒 − 04

where 𝐴 =
𝑃𝑥

𝑤2

2
+

𝑃𝑦

𝑡2

2
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Example - FOSM

• 𝜎𝑌 =
𝜕𝑔

𝜕𝑃𝑥

2

𝜎𝑃𝑥

2 +
𝜕𝑔

𝜕𝑃𝑦

2

𝜎𝑃𝑦

2 = 0.2284

• 𝑝𝑓 = 
−𝜇𝑌

𝜎𝑌
= 

−0.6708

0.2284
=

 −2.9367 = 1.70 × 10−3
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Example - MCS

• 𝐿 = 100 in, 𝑡 = 2 in, 𝑤 = 4 in, 𝐸 = 30106 psi

• 𝐗 = (𝑃𝑥, 𝑃𝑦), 𝑃𝑥~𝑁 500, 1002 lb, 
𝑃𝑦~𝑁 1000, 1002 lb, 𝑃𝑥 and 𝑃𝑦 are independent

• Allowable deflection 𝐷0 = 3 in

• 𝑔 𝐗 = 𝐷0 −
4𝐿3

𝐸𝑤𝑡

𝑃𝑥

𝑤2

2
+

𝑃𝑦

𝑡2

2

• 𝑝𝑓 = Pr 𝑔 𝐗 < 0}
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100 and 1000 Simulations
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1e5 Simulations
• More simulations, More accurate result
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Reliability –Based Design (RBD)

Design without 
considering uncertainty: 
Low reliability

Design with considering 
uncertainty: high 
reliability
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RBD

• RBD ensures that a design has the probability 
of failure less than an acceptable level, and

• therefore ensures that events that lead to 
catastrophe are extremely unlikely. 

• RBD is achieved by maximizing cost and 
maintaining reliability at a required level.
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Conclusions

• For important mechanical components in 
important applications,

• a factor of safety may not be sufficient to 
account for uncertainties;

• it is imperative to consider reliability.

• Uncertainty can be modeled probabilistically.

• Reliability can be estimated by  FOSM and 
MCS.
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