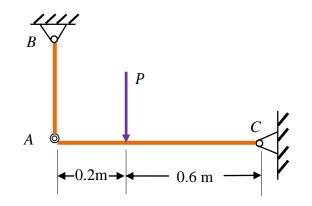
Exam 2

Please put your answers in the following table.

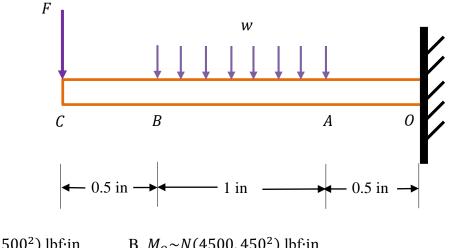
1	2	3	4	5	6	7	8	9	10

1. A specimen of steel was tested in tension and loaded by an axial force $F \sim N(\mu_F, \sigma_F^2)$ kN. The yield strength of steel is $S_y \sim N(\mu_{S_y}, \sigma_{S_y}^2)$ MPa. And the modulus of elasticity and modulus of rigidity are *E* and *G*, respectively. Which of the following statements is true about the Poisson's ratio v?

A. The larger is μ_F , the larger is the mean of ν


- B. The smaller is μ_F , the larger is the mean of ν
- C. The larger is $\mu_{S_{\nu}}$, the larger is the mean of ν
- D. ν is related to *E* and *G*
- 2. For the above problem, which of the following statements is not true about the distribution of the resilience u_R ?
 - A. u_R is normally distributed with $u_R \sim N(\mu_{u_R}, \sigma_{u_R}^2)$
 - B. The smaller is μ_F , the smaller is the mean of u_R
 - C. The larger is μ_{S_v} , the larger is the mean of u_R
 - D. The smaller is $\sigma_{S_{\nu}}$, the smaller is the standard deviation of u_R
- 3. A solid circular bar is twisted by a torque $T \sim N(1000, 100^2)$ N·m. The diameter and length of the bar are d = 80 mm and l = 800 mm, respectively. Determine the mean and standard deviation of the maximum shear stress τ_{max} .

A. $\mu = 9.95$ MPa, $\sigma = 9.95$ MPa B. $\mu = 9.95$ MPa, $\sigma = 0.0995$ MPa C. $\mu = 9.95$ MPa, $\sigma = 0.995$ MPa D. $\mu = 9.95$ MPa, $\sigma = 0.990$ MPa


4. For the above problem, if the modulus of rigidity is G = 60 GPa, what is the mean and standard deviation of the angle of twist θ ?

A. $\mu = 0.017$, $\sigma = 1.7 \times 10^{-4}$ B. $\mu = 0.017$, $\sigma = 1.7 \times 10^{-2}$ C. $\mu = 0.017$, $\sigma = 2.9 \times 10^{-6}$ D. $\mu = 0.017$, $\sigma = 0.0017$

- 5. For problem 3, if the allowable shear stress is $\tau_a = 12$ MPa, what is the probability of failure? A. $\Phi(2.06)$ B. $\Phi(-2.06)$ C. $\Phi(20.6)$ D. $\Phi(-20.6)$
- 6. For problem 4, if the allowable angle of twist is $\theta_a = 0.022$, determine the reliability of the bar. A. $\Phi(29.4)$ B. $\Phi(-2.94)$ C. $\Phi(2.94)$ D. $\Phi(-29.4)$
- 7. If $P \sim N(4000, 400^2)$ N, what is the distribution of the load acting on rod AB?A. $F_{AB} \sim N(1000, 100^2)$ NB. $F_{AB} \sim N(2000, 200^2)$ NC. $F_{AB} \sim N(3000, 300^2)$ ND. $F_{AB} \sim N(4000, 400^2)$ N

- 8. For the above problem, if the maximum allowable load of rod *AB* is $P_a = 3600$ N, determine the probability of failure of the rod.
 - A. $\Phi(0)$ B. $\Phi(-7.28)$ C. $\Phi(-2)$ D. $\Phi(2)$
- 9. A circular cross-section beam is cantilevered at *O* and subjected to a concentrated force $F \sim N(2000, 200^2)$ lbf and an uniform load of $w \sim N(3000, 300^2)$ lbf/in. Determine the distribution of the bending moment at point *O*.

- A. $M_0 \sim N(5000, 500^2)$ lbf·inB. $M_0 \sim N(4500, 450^2)$ lbf·inC. $M_0 \sim N(4000, 400^2)$ lbf·inD. $M_0 \sim N(3500, 350^2)$ lbf·in
- 10. For problem 9, if the diameter of the beam is d = 2 in and the maximum allowable bending stress is $\tau_a = 8$ kpsi, what is the reliability of the beam? A. $\Phi(-2.57)$ B. $\Phi(-3.23)$ C. $\Phi(-2.26)$ D. $\Phi(2.57)$