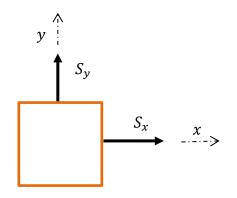
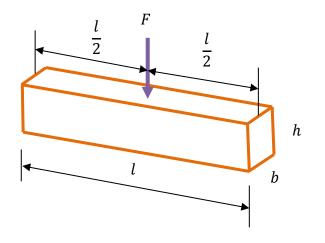

## Exam 3


Please put your answers in the following table.

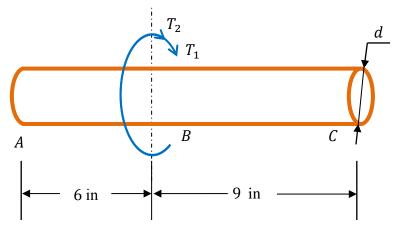
| <u> </u> | 1 | 2 | 2 | 4 | F | ( | 7 | 0 | 0 | 10 |
|----------|---|---|---|---|---|---|---|---|---|----|
|          | 1 | Z | 3 | 4 | 5 | 0 | / | ð | 9 | 10 |
|          |   |   |   |   |   |   |   |   |   |    |
|          |   |   |   |   |   |   |   |   |   |    |

1. An element is cut by an oblique plane with a normal *n* at an angle  $\phi = 60^{\circ}$  counterclockwise from the *x* axis. If  $S_x \sim N(60, 6^2)$  MPa,  $S_y \sim N(50, 5^2)$  MPa,  $\tau_{xy} \sim N(30, 3^2)$  MPa, what is the distribution of shear stress?




- A.  $S \sim N(78.5, 7.8^2)$  MPaB.  $S \sim N(78.5, 4.8^2)$  MPaC.  $S \sim N(78.5, 5.6^2)$  MPaD.  $S \sim N(78.5, 6.8^2)$  MPa
- 2. For the above problem, which of the following statements is not true about the first principle shear stress  $\tau_1$ ?
  - A. The smaller is the mean of  $\tau_{xy}$ , the smaller is the mean of  $\tau_1$
  - C. The larger is the standard deviation of  $\tau_{xy}$ , the larger is the standard deviation of  $\tau_1$
  - D. The larger is the standard deviation of  $\sigma_y$ , the smaller is the standard deviation of  $\tau_1$
  - D.  $\tau_1$  is not normally distributed
- 3. A stress element is subjected to two-dimensional stress as shown in the figure. The Poisson's ratio is  $\nu = 0.3$  and the modulus of elasticity is E = 60 MPa. If  $S_x \sim N(80, 8^2)$  MPa and  $S_y \sim N(60, 6^2)$  MPa, determine the mean and standard deviation of the axial strain  $\epsilon_x$ .



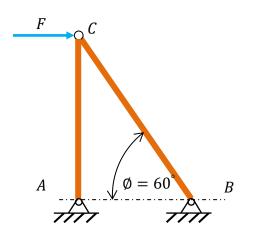

A.  $\mu = 0.51$ ,  $\sigma = 0.064$ B.  $\mu = 0.51$ ,  $\sigma = 0.051$ C.  $\mu = 0.64$ ,  $\sigma = 0.064$ D.  $\mu = 0.64$ ,  $\sigma = 0.051$ 

- 4. For problem 3, if the length of the element is l = 1 mm and the maximum allowable axial elongation is δ<sub>a</sub> = 0.7 mm, determine the probability of failure.
  A. Φ(-2.95)
  B. Φ(-1.65)
  C. Φ(2.95)
  D. Φ(-2.68)
- 5. A concentrated load  $F \sim N(6000, 600^2)$  N is applied to a beam with a rectangular cross-section as shown in the figure. The width and height of beam are b = 60 mm and h = 80 mm, respectively. And the length of the beam is l = 2 m. What is the distribution of the maximum bending stress?



| A. $\tau_{\text{max}} \sim N(46.9, 22^2)$ MPa   | B. $\tau_{\rm max} \sim N(46.9, 4.69^2)$ MPa    |
|-------------------------------------------------|-------------------------------------------------|
| C. $\tau_{\text{max}} \sim N(64.9, 6.49^2)$ MPa | D. $\tau_{\text{max}} \sim N(64.9, 4.69^2)$ MPa |

- 6. For the above problem, if the allowable bending stress is  $S_a \sim N(70, 7^2)$  MPa, what is the reliability of the beam?
  - A.  $\Phi(1.72)$  B.  $\Phi(-2.75)$  C.  $\Phi(2.75)$  D.  $\Phi(-1.72)$
- 7. Two torques are applied to a round shaft as shown in the figure. The diameter of the shaft is d = 1 in. And the modulus of rigidity is  $G = 11.5(10^6)$  psi If  $T_1 \sim N(160, 16^2)$  lbf·in and  $T_2 \sim N(120, 12^2)$  lbf·in, what is the distribution of the angle of twist at *B*?




| A. $\theta \sim N(8.93(10^{-4}), (8.93(10^{-5}))^2)$ rad | B. $\theta \sim N(8.93(10^{-4}), (6.38(10^{-5}))^2)$ rad |
|----------------------------------------------------------|----------------------------------------------------------|
| C. $\theta \sim N(6.38(10^{-4}), (6.38(10^{-5}))^2)$ rad | D. $\theta \sim N(6.38(10^{-4}), (8.93(10^{-5}))^2)$ rad |

- 8. For the above problem, if the allowable angle of twist is θ<sub>a</sub> = 1(10<sup>-4</sup>), determine the probability of failure of the shaft.
  A. Φ(-2.5)
  B. Φ(2.5)
  C. Φ(-1.68)
  D. Φ(1.68)
- 9. A shaft is subjected to a torque  $T \sim N(200, 20^2)$  N·m. If the shaft speed is 2500 rev/min, what is the distribution of the power that the shaft can transmit?

A.  $\mu = 52.4 \text{ kW}, \sigma = 5.24 \text{ kW}$ B.  $\mu = 5.24 \text{ kW}, \sigma = 0.524 \text{ kW}$ C.  $\mu = 62.8 \text{ kW}, \sigma = 6.28 \text{ kW}$ D.  $\mu = 6.28 \text{ kW}, \sigma = 0.628 \text{ kW}$ 

10. A force  $F \sim N(60, 6^2)$  kN is applied to a truss as shown in the figure. The rod *BC* has a round cross-section with a dimeter of d = 0.1 m. If the yield stress of rod *BC* is  $S_y = 20$  MPa, determine the reliability of rod *BC*.



