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Uncertainty in Mechanisms

• Lengths 𝑅1, 𝑅2, 𝑅3, and 𝑅4 are random 
variables due to manufacture imprecision
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Uncertainty in Mechanisms

• The joint clearances at A, B, C, and D are also 
random due to manufacture imprecision and 
installation errors.
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Uncertainty in Mechanisms

• Loads and material properties are also 
random.
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Impact of Uncertainty
• If the above mechanism generates a 

functional relationship 𝜓 = 𝑓(𝐑) and the 
required motion output is 𝜓𝑟, then the 
motion error is  = 𝑓 𝐑 − 𝜓𝑟, where 𝐑 =
(𝑅1, 𝑅2, 𝑅3, 𝑅4) 

•  is also a random variable.

• Required motion output may not be realized 
with certainty.
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Why Consider Uncertainty?

• We know the true solution.

• We know the effect of uncertainty.

• We can design mechanisms whose 
performance is not sensitive to uncertainty

• We can make more reliable decisions.
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In this presentation, we focus on uncertainty only in R. 



• We use probability distributions to model 
parameters with uncertainty.

How Do We Model Uncertainty?
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Probability Distribution
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• With random samples, we can 
draw a histogram.

• If y-axis is frequency and the 
number of samples is infinity, we 
get a probability density function 
(PDF) 𝑓(𝑥) for random variable 
𝑋.

• The probability of 𝑎 ≤ 𝑋 ≤ 𝑏 is

Pr 𝑎 ≤ 𝑋 ≤ 𝑏 =  𝑎
𝑏
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Normal Distribution

• 𝑋~𝑁(𝜇, 𝜎2)

• 𝐹 𝑥 = Pr 𝑋 < 𝑥 :  
cumulative distribution 
function (CDF)

• Pr 𝑎 < 𝑋 < 𝑏 = 𝐹 𝑏 −
𝐹 𝑎

• Pr 𝑋 < 𝑥 =
𝑥−𝜇𝑌

𝜎𝑌

• Pr 𝑋 > 𝑥 = 1 − Pr 𝑋 <

10

1.4 1.6 1.8 2 2.2 2.4 2.6 2.8
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2



More about Standard Deviation 𝜎 (std)

• It indicates how data spread around the mean.

• It is always non-negative.

• High std means

– High dispersion

– High uncertainty

– High risk
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More Than One Random Variables

• If all lengths are normally distributed

– 𝑅𝑖~𝑁 𝜇𝑖 , 𝜎𝑖
2

– 𝑅𝑖 𝑖 = 1,2,⋯ , 𝑛 are independent

– 𝑌 = 𝑐0 + 𝑐1𝑋1 + 𝑐2𝑋2 + ⋯+ 𝑐𝑛𝑋𝑛

– 𝑐𝑖 𝑖 = 1,2,⋯ , 𝑛 are constants.

• Then

– 𝑌~𝑁 𝜇𝑌, 𝜎𝑌
2

– 𝜇𝑌 = 𝑐0 + 𝑐1𝜇1 + 𝑐2𝜇2 + ⋯+ 𝑐𝑛𝜇𝑛

– 𝜎𝑌 = 𝑐1
2𝜎1

2 + 𝑐2
2𝜎2

2 + ⋯+ 𝑐𝑛
2𝜎𝑛

2
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Mechanism Reliability

• Let the required motion error be .

• Mechanism reliability is 𝑅 = Pr |𝑓 𝐑 − 𝜓𝑟| <
}

• Probability of failure 𝑝𝑓 = 1 − 𝑅 = Pr |𝑓 𝐑 −

13



First Order Second Moment Method (FOSM)
• Assume lengths 𝑅𝑖~𝑁 𝜇𝑖 , 𝜎𝑖

2 𝑖 = 1,2,⋯ , 𝑛 are independent
• First order Taylor expansion for motion output 𝜓 = 𝑓(𝐑)

𝜓=𝑓 𝐑 ≈ 𝑓 𝛍 +  𝑖=1
𝑛 𝜕𝑓

𝜕𝑅𝑖
(𝑅𝑖 − 𝜇𝑖)

𝛍 = (𝜇1, 𝜇2, ⋯ , 𝜇𝑛)
• Motion error  = 𝜓 − 𝛿

• ~𝑁 𝜇𝜓 − 𝛿, 𝜎𝜓
2 , 𝜇𝜓 = 𝑓 𝛍 , 𝜎𝜓

2 =  𝑖=1
𝑛 𝜕𝑓

𝜕𝑅𝑖

2

𝜎𝑖
2

• 𝑝𝑓 = Pr 𝜓 − 𝜓𝑟 >  + Pr 𝜓 − 𝜓𝑟 < −

• 𝑝𝑓 = 1 − Pr 𝜓 − 𝜓𝑟 <  + Pr 𝜓 − 𝜓𝑟 < −

• 𝑝𝑓 = 1 −
𝛿−(𝜇𝜓−𝜓𝑟)

𝜎𝜓
+

−𝛿−(𝜇𝜓−𝜓𝑟)

𝜎𝜓
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Monte Carlo Simulation (MCS)*
A sampling-based simulation method
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*This topic is optional.
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Step 1: Sampling on random variables

• Generate samples of input random variables 
according to their distributions.

• For example, for 𝑋𝑖~𝑁 𝜇𝑖 , 𝜎𝑖
2 , samples can 

be generated by Matlab.

– Matlab normrnd(𝜇𝑖, 𝜎𝑖 , 1, 𝑁) produces a row 
vector of 𝑁 random samples.

– Excel can also be used.



Step 2: Obtain Samples of Output

• Suppose N sets of random variables have been 
generated 

𝐱𝑖 = (𝑥𝑖1, 𝑥𝑖2, ⋯ , 𝑥𝑖𝑛), 𝑖 = 1,2,⋯ ,𝑁

𝑁 is the number of simulations

• Then samples of output s are calculated a

𝑦𝑖 = 𝑔 𝐱𝑖



Step 3: Statistic Analysis on output

• Mean 𝜇𝑌 =
1

𝑁
 𝑖=1

𝑁 𝑦𝑖

• Standard deviation 𝜎𝑌 =
1

𝑁−1
 𝑖=1

𝑁 𝑦𝑖 − 𝜇𝑖
2

• The probability of failure 𝑝𝑓 =
𝑁𝑓

𝑁
𝑁𝑓 is the number of failures.
𝑁𝑓 = number of 𝑦𝑖<0, 𝑖 = 1,2,⋯ ,𝑁



FORM vs MCS

• FORM is more efficient

• FORM may not be accurate when a limit-state 
function is highly nonlinear

• MCS is very accurate if the sample size is 
sufficiently large

• MCS is not efficient
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Example - FOSM

• 𝑅1~𝑁(120,0.12) mm, 𝑅2~𝑁(200,0.12) mm, 
𝑅3~𝑁(20,0.12) mm; they are independent.

• Requirement: 𝑠𝑟 = 287 mm when 𝜃 = 30 (The motion 
output here is displacement 𝑠 instead of an angle 𝜓.)

• Allowable motion error: 𝛿 = 0.7 mm

• 𝑠 = 𝑓 𝐑 = 𝑅1cos𝜃 + 𝑅2
2 − 𝑅3 + 𝑅1sin𝜃

2
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Example - FOSM
• 𝜇𝑠 = 𝑓 𝛍 = 𝑅1cos𝜃 + 𝑅2

2 − 𝑅3 + 𝑅1sin𝜃
2 =

120cos30 2002 − 20 + 120sin30 2 = 287.2261 
mm

•
𝜕𝑓

𝜕𝑅1
= cos𝜃 −

𝑅3+𝑅1sin𝜃 sin𝜃

𝐴
= 0.6478

•
𝜕𝑓

𝜕𝑅2
=

𝑅2

𝐴
= 1.0911

•
𝜕𝑓

𝜕𝑅3
= −

𝑅3+𝑅1sin𝜃

𝐴
= −0.4364

where 𝐴 = 𝑅2
2 − 𝑅3 + 𝑅1sin𝜃

2
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Example - FOSM

• 𝜎𝑠 =
𝜕𝑠

𝜕𝑅1

2

𝜎𝑅1

2 +
𝜕𝑠

𝜕𝑅2

2

𝜎𝑅2

2 +
𝜕𝑠

𝜕𝑅3

2

𝜎𝑅3

2 =

0.1342mm

• 𝑝𝑓 = 1 −
𝛿− 𝜇𝑠−𝑠𝑟

𝜎𝑠
+

−𝛿− 𝜇𝑠−𝑠𝑟

𝜎𝑠
= 1 −


0.7− 287.2261−287

0.1342
+


−0.7− 287.2261−287

0.1342
= 2.0635 × 10−4
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Example - MCS

• 𝑅1~𝑁(120,0.12) mm, 𝑅2~𝑁(200,0.12) mm, 
𝑅3~𝑁(20,0.12) mm; they are independent.

• Requirement: 𝑠𝑟 = 287 mm when 𝜃 = 30

• Allowable motion error: 𝛿 = 0.7 mm

• 𝑠 = 𝑓 𝐑 = 𝑅1cos𝜃 + 𝑅2
2 − 𝑅3 + 𝑅1sin𝜃

2
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1e6 Simulations
• 𝑝𝑓 = 2.120 × 10−4
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Reliability–Based Mechanism 
Synthesis

• Find: Design variables (average mechanism 
dimensions) 𝛍R

• Minimize: average motion error  =

𝜇𝜓 − 𝜓𝑟 or other objective

• Subject to reliability constraint Pr |𝜓 −
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Conclusions

• For important mechanisms in important 
applications, it is imperative to consider 
reliability.

• Uncertainty can be modeled probabilistically.

• Reliability can be estimated by FOSM and 
MCS.

• Same methodologies can also be used for 
cams, gears, and other mechanisms.
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