## **Homework 8**

The surface of a cam is expressed by a logarithmic spiral formula  $r = ke^{0.05\theta}$  mm, where  $\theta$  is in radians. Due to the uncertainty in the manufacturing process of the cam, the coefficient k follows a normal distribution of  $k \sim N(19, 0.15^2)$ . The cam rotates at an constant angular velocity of  $\omega = 6$  rad/s. Determine the distribution of the velocity and the acceleration of the point on the cam that contacts the follower rod AB at the instant  $\theta = \frac{\pi}{4}$ . If the allowable acceleration of AB is a = 780 mm/s<sup>2</sup>, find the probability of failure of the system. (**Ans.**  $v_c \sim N(118.71, 0.94^2)$ mm/s,  $a_c \sim N(753.83, 5.95^2)$ mm/s<sup>2</sup>,  $p_f = 5.4632 \times 10^{-6}$ )

