Experimental Uncertainty ME 242 Mechanical Engineering Systems

Missouri University of Science and Technology

Outline

- Experimental Error
- Types of Experimental Error
- Statistics
- Normal Distribution
- Combine uncertainty
- Uncertainty propagation
- Conclusions

An Introductory Example

- A dynamics problem: given $\omega_{AB} = 4 \text{ rad/s}$, find v_c
- ω_{AB} may be measured.
- Let $X = \omega_{AB}$
- Ten measurements: $(X_i)_{i=1,10} =$
- (3.96 3.99 4.02 4.01 3.98 4.02
 3.97 3.99 3.98 4.0) rad/s
- Uncertainty exists.

Measurement Error

- Measurement error is the difference between the measured value of a quantity and its true value.
- Measurement error is unavoidable and can be estimated.
- The measurement can be written as

$$-X = \overline{X} \pm U$$

- $-\overline{X}$ is the best estimate
- -U is the uncertainty term
- The true value may be between $\overline{X} U$ and $\overline{X} + U$.
- If U has 95% coverage (confidence), it is called the expanded uncertainty by ASME.

Туре	Examples	How to minimize it
 Random errors are caused by unknown and unpredictable changes 	 The previous ten different measurements of the angular velocity 	 Can be reduced by averaging over more observations
 Systematic errors occur when the equipment is improperly constructed, calibrated or used. always occurs with the same value when use the instrument in the same way 	 Tape measure has been stretched out from years of use A stopwatch is accurate around 20°C, but you use it at 40°C. 	 Hard to detect and to eliminate The instrument maker may provide the estimate Calibrate the instrument

How Do We Model Uncertainty?

- Measure $X = \omega_{AB}$ ten times, we get
- X = (3.96 3.99 4.02 4.01 3.98 4.02 3.97 3.99 3.98 4.0) rad/s
- How do we use the samples?

• Average
$$\overline{X} = \frac{1}{10} (3.96 + 3.99 + \dots + 3.98 + 4.0)$$

= $\frac{1}{10} \sum_{i=1}^{10} X_i = 3.992$ rad/s = 3.99 rad/s

How Do We Measure the Dispersion?

- $X = (3.96 \ 3.99 \ 4.02 \ 4.01 \ 3.98 \ 4.02 \ 3.97 \ 3.99 \ 3.98 \ 4.0)$
- We could use $X_i \overline{X}$ and $\frac{1}{N} \sum (X_i \overline{X})$, N = 10
- But $\frac{1}{N}\sum(X_i-\overline{X})=0.$
- To avoid 0, we use $\frac{1}{N}\sum (X_i \overline{X})^2$; to have the same unit as

$$\overline{X}$$
, we use $\sqrt{\frac{1}{N}\sum_{i=1}^{N}(X_i-\overline{X})^2}$

• We actually use

Standard deviation:
$$s = \sqrt{\frac{1}{N-1}\sum_{i=1}^{N}(X_i - \overline{X})^2}$$
.

- s is called the standard uncertainty by ASME.
- We found s = 0.0204 = 0.02 rad/s.

More about Standard Deviation (std)

- It indicates how data spread around the mean.
- It is always non-negative.
- High std means
 - High dispersion
 - High uncertainty

Probability Distribution

• With more samples, we can draw a histogram.

 If y-axis = frequency/(width of the bins in x-axis) and the number of samples is infinity, we get a probability density function (PDF) f(x).

Normal Distribution

• $X \sim N(\overline{X}, s^2)$

More about Normal Distribution

- $\overline{X} \pm s$ contains 68.3% of items.
- $\overline{X} \pm 2s$ contains 95.5% of items.
- $X \pm 3s$ contains 99.7% of items.

Angular Velocity Example

- Using a normal distribution, report the measurement result at the 95% confidence level?
- Since $\overline{X} \pm 2s$ has a 95% coverage, we use 2s.
 - Best estimate = \overline{X} = 3.99 rad/s
 - Uncertainty U = 2s = 2(0.02) = 0.04 rad/s

$$-X = \overline{X} \pm U$$

$$-X = \omega_{AB} = 3.99 \pm 0.04$$
 rad/s

Given $X = \omega_{AB} = (3.96 \ 3.99)$ $4.02 \ 4.01 \ 3.98$ $4.02 \ 3.97 \ 3.99$ $3.98 \ 4.0) \text{ rad/s}$ What we found $\overline{X} = 3.99 \text{ rad/s}$ s = 0.02 rad/s

More about 95% Confidence

- The range X ∈ [3.99 0.04, 3.99 + 0.04]in the example is called the 95% confidence interval.
- The likelihood of the interval covers the true value is 95%.
- We expect that there is only one chance in 20 that the true value does not lie within the specified range.

Two Random Variables

- X_i with \overline{X}_i and s_i
- X_i (i = 1,2) are independent
- $Y = X_1 + X_2$
- $\overline{Y} = \overline{X}_1 + \overline{X}_2$
- $s_Y = \sqrt{s_1^2 + s_2^2}$

Combined Uncertainty

- There are two independent sources of uncertainty
- Total error = error 1 + error 2
- U_1 Uncertainty from source 1, $U_1 = 2s_1$
- U_2 Uncertainty from source 2, $U_2 = 2s_2$
- $s = \sqrt{s_1^2 + s_2^2}$
- Combined uncertainty U = 2s
- Or $U = \sqrt{U_1^2 + U_2^2}$
- The result can be extended to more than two sources of uncertainty.

The Angular Velocity Example

- X = ω_{AB} = (3.96 3.99 4.02 4.01 3.98 4.02 3.97 3.99 3.98 4.0) rad/s
- Other source: The measuring device manufacturer claims an accuracy of ± 0.03 rad/s readout at 95% confidence level.
- What we've found
 - $-\overline{X} = 4.0$ rad/s
 - $s_1 = 0.02 \text{ rad/s}$ and $U_1 = 0.04 \text{ rad/s}$
- Now U₂ =0.03 rad/s
- Combined uncertainty $U = \sqrt{0.04^2 + 0.03^2} = 0.05$ rad/s
- Then $\omega_{AB} = X = 4.0 \pm 0.05 \text{ rad/s}$

Uncertainty Propagation

- If Y is a function of X_i ($i = 1, 2, \dots, n$)
- $Y = f(X_1, X_2, ..., X_n)$
- X_i is measured as $\overline{X}_i \pm U_i$
- What is Y or $Y = \overline{Y} \pm U_Y$?

A Linear Function

- X_i ($i = 1, 2, \dots, n$) are independent
- $Y = c_0 + c_1 X_1 + c_2 X_2 + \dots + c_n X_n$
- c_i ($i = 0, 1, 2, \dots, n$) are constant.
- Then $\overline{Y} = c_0 + c_1 \overline{X}_1 + c_2 \overline{X}_2 + \dots + c_n \overline{X}_n$

•
$$s_Y = \sqrt{c_1^2 s_1^2 + c_2^2 s_2^2 + \dots + c_n^2 s_n^2}$$

A Nonlinear Function

•
$$Y = f(X_1, X_2, \dots, X_n)$$

•
$$\overline{X} = f(\overline{X}_1, \overline{X}_2, \dots, \overline{X}_n)$$

• Taylor expansion series

•
$$Y \approx c_0 + c_1 X_1 + c_2 X_2 + \dots + c_n X_n$$

•
$$c_i = \frac{\partial f}{\partial X_i}$$
 at \overline{X} $(i = 1, 2, \dots, n)$

•
$$\overline{Y} = f(\overline{X})$$

•
$$s_Y = \sqrt{c_1^2 s_1^2 + c_2^2 s_2^2 + \dots + c_n^2 s_n^2}$$

MISSOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY

Estimate of Y

•
$$Y = \overline{Y} \pm U_Y$$

• $U_Y = 2s_Y$

- Given $\omega_{AB} = 3.99 \pm 0.05$ rad/s, $L_{AB} = 100.0 \pm 0.1$ mm
- Find v_c
- Solution

-
$$X_1 = \omega_{AB}$$
, $\bar{X}_1 = 4$ rad/s, $U_1 = 0.05$ rad/s

-
$$X_2 = L_{AB}, \bar{X}_2 = 100 \text{ m}, U_2 = 0.1 \text{ mm}$$

From dynamics

$$- Y = v_c = \frac{L_{AB}\omega_{AB}}{\cos 45^{\circ}} = \frac{X_1X_2}{\cos 45^{\circ}}$$
$$- \bar{Y} = \frac{100(3.99)}{\cos 45^{\circ}} = 564.3 \text{ mm/s}$$

$$-c_{1} = \frac{\partial f}{\partial X_{1}} = \frac{X_{2}}{\cos 45^{\circ}} = \frac{100}{\cos 45^{\circ}} = 141.42$$
$$-c_{2} = \frac{\partial f}{\partial X_{2}} = \frac{X_{1}}{\cos 45^{\circ}} = \frac{3.99}{\cos 45^{\circ}} = 5.64$$

Example

$$- U_Y = \sqrt{c_1^2 U_1^2 + U_2^2 \sigma_2^2} = \sqrt{141.42^2 (0.05)^2 + 5.64^2 (0.1)^2}$$

= 7.09 = 7.1 mm/s

Result

- $v_c = 564.3 \pm 7.1 \text{ mm/s}$
- The confidence is approximately 95%.

Review What We've Done

- Measurement of $X_1 = \omega_{AB}$
 - Error source 1: (3.96 3.99 4.02 4.01 3.98 4.02 3.97 3.99 3.98 4.0) rad/s
 - $-\overline{X}_1 = 3.99 \text{ rad/s}, U_1 = 0.04 \text{ rad}$
 - Error source 2 (from the device maker): $U_2 = 0.03$ rad
 - Combined uncertainty $U = \sqrt{0.04^2 + 0.03^2} = 0.05$ rand/s
- Measurement of $X_2 = L_{AB} = 100 \pm 0.01 \text{ mm}$
- Uncertainty propagation for estimating v_c - $v_c = 564.3 \pm 7.1$ mm/s

100 mm

В

WAB

45°

100 mm

√υ_C

Conclusions

- Measurements of any physical quantity may never be exact.
- We only know its value with a range of uncertainty.
- the measurement can be written as
 - $-\overline{X} \pm U$
 - The true value may be between $X = \overline{X} U$ and $\overline{X} + U$ with a certain confidence
- The uncertainty *U* can by qualified with the approaches presented in this lecture.