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1. Introduction 

Experiments require taking measurements of physical quantities, such as velocity, 

time, and voltage. We generally assume that the “true” values of the quantities to be 

measured exist if we had a perfect measuring apparatus and followed a perfect procedure. 

The measurements, however, are always subject to unavoidable uncertainty due to the 

limitations of the measuring apparatus, random environment, and even fluctuations in the 

value of the quantity being measured.  

As uncertainty is an unavoidable part of the measurement process, we should at first 

identify its sources and effects, and then quantify and report it. We should also seek to 

reduce measurement uncertainty whenever possible.  

The result of any measurement has two components as shown in the following 

expression for a measured temperature. 

 20 C 1 CT     (1) 

The first term on the right-hand side is a numerical value that gives the best estimate 

of the quantity measured, and the second term indicates the degree of 

uncertainty associated with the estimated value. This result tells that the temperature 

measured is most likely to be 20C, but it could be between 19C and 21C. In this 

chapter we study how to get the expression as the one in Eq. (1) for a quantity measured. 

The other task of this chapter is uncertainty propagation. If the measured quality, for 

example, the temperature T in Eq. (1), is used as an input variable for an analysis, the 

analysis result for the output variable Y  will also be naturally reported in the same form 

as Eq. (1), having the best estimate of Y  and the associated uncertainty term. The second 

term is the result of the uncertainty in T propagated to Y . The task of uncertainty 

propagation is to find both of the two terms of Y . 
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2. Experimental Errors 

In this section, we discuss experimental errors and their types. 

2.1 Experimental errors 

Experimental error is the difference between the true value of the parameter being 

measured and the measured value. The error of a measurement is never exact because the 

true value is never exactly known. Measurement errors could be either positive or 

negative. 

A measurement error can be assessed by its accuracy and precision.  

Accuracy measures how close a measured value is to the true value. As discussed 

above, the true value may never be exactly known, and it is difficult or even impossible 

to determine the accuracy of a measurement. 

Precision measures how closely two or more repeated measurements agree with each 

other. Good repeatability means higher precision. 

The distinction between accuracy and precision is illustrated in Fig.1. 

 

Fig. 1 Accuracy and Precision 

Generally speaking, the accuracy and precision can be increased by decreasing the 

systematic and random errors, respectively. These two errors constitute the experimental 

error. Next we discuss the two types of error. 
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2.2  Systematic errors 

Systematic errors are those that affect the accuracy of a measurement. Systematic 

errors are not determined by chance but are introduced by an inaccuracy inherent in a 

measuring instrument or measuring process. In other words, systematic errors may occur 

because of something wrong with the instrument or its data handling system or because 

of the wrong use of the instrument. In the absence of other types of errors, systematic 

errors yield results systematically in repeated measurements, either greater than or less 

than the true value. In this sense, systematic errors are “one-sided” errors. 

For example, you use a cloth tape measure to measure the length of a table. The tape 

measure has been stretched out from a number years of use. As a result, your length 

measurements will always be shorter than the actual length. 

If a systematic error is known to be present in the measurement, you should either to 

correct it or report it in your uncertainty statement. It is, however, hard to detect or reduce 

systematic errors. Below are some general guidelines. 

 Calibrate the measuring instrument if the systematic error comes from poor 

calibration. 

 Compare experimental results from your instrument with those from a more 

accurate instrument so that you have a good idea about how large systematic error of 

your instrument is. 

 Change the environment, which interferes with the measurement process, so that 

the accuracy of the measuring instrument is highest. 

2.3 Random experimental errors 

Random errors are errors affecting the precision of a measurement. Random errors 

can be easily detected by different observations from repeated measurements. Random 

errors are commonly form unpredictable variations in the experimental conditions under 

which the experiment is performed. For example, random errors can come from electric 

fluctuations within components used in a measuring instrument or variations in 

temperature change in a lengthy experiment. 

In the absence of other types of errors, repeated measurements yield results 

fluctuating above and below the true value or the average of the measurements. This 

indicates that random errors are “two-sided” errors.  

  

3. Experimental Uncertainty Quantification 

As shown in the expression 20 1T C C  in Eq. (1), when reporting the 

experimental result, we have the best estimate term ( 20 C ) and the uncertainty term 

( 1 C ). In this section, we focus on using statistical techniques to find both of the terms.  
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Uncertainty herein is a quantification of the double about the measurement result. 

Uncertainty quantification provides us with an estimate of the limits to which we can 

expect an error to go as shown in Eq. (1).  

Suppose a quantity to be measured is X, and its measurements are 1x  , 2x ,…, Nx , 

where N is the number of repeated measurements. 

With the N measurements, the obvious question we may ask is: “What is the best 

estimate of X?” If the only error source is from random fluctuations, given that the 

random error is a “two-sided” error, a nature answer is to use the average of the 

measurements. Averaging the measurements makes the fluctuations on both sides 

cancelled out to some degree. 

The average or mean is calculated by  

 1 2

1

... 1 N
N

i

i

x x x
X x

N N 

  
     (2) 

After obtaining the best estimate term, we now look at the uncertainty term. The 

uncertainty in the set of the measurements 1x  , 2x ,…, Nx  can be quantified by the degree 

of scatter of the measurements around the mean. 

The most commonly used measure of scatter is the sample standard deviation s  

defined by 

 

2

2 2 2

1 2 1

( )
( ) ( ) ... ( )

1 1

N

i

N i

x x
x x x x x x

s
N N




     

 
 


  (3) 

 

Example 1 A slider mechanism is show in Fig. 2. The motion input, which is the angular 

velocity AB  of link AB, is measured. The ten measurements are given by 

1,10( )  (3.96  3.99  4.02  4.01 3.98  4.02 3.97  3.99  3.98   4.0)i ix    rad/s. Determine the 

average and standard deviation of the measurements.  
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Fig. 2 Slider Mechanism 

The average is given by 

 1

1 1
(3.96  3.99  4.02  4.01 3.98  4.02 3.97  3.99  3.98   4.0)

10

3.994 3.99 rad/s

N

i

i

X x
N 

 

 


  (4) 

The average is considered the best estimate the angular velocity. 

The standard deviation is computed by 

 

10
2 2

1 1

( ) ( 3.994)
0.0204 0.02 rad/s

1 10 1

N

i i
i i

x x x
s

N

 

  
   

 
  (5) 

Note that the number of significant digits used in the final result of the average (3.99 

rad/s) is the same as the number of significant digits in the measurements. It does not 

make sense to use the calculated one (3.994 rad/s) because its last digit is beyond the 

precision of the measuring instrument.  

After we have done the statistical analysis, we could state that the best estimate of 

AB  is 3.99 rad/s. Of course, there is some degree of uncertainty because of the non-zero 

standard deviation. We should also report the associated uncertainty at a certainty 

confidence level. This requires us to know something about probability distributions. 

Next we discuss some basics about the normal distribution, which is the most commonly 

used distribution. 
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A normal distribution for random variable X  is determined by the mean and standard 

deviation of X  and is denoted by 
2~ ( , )X N X s .  

The probability density function (PDF) of X , as shown in Fig. 3, tells us everything 

about X , especially the likelihood of the occurrence of certain possible values of X . It is 

easy to see that the values around the mean X  have the highest chance to occur. Fig. 3 

also indicates that the range defined by 2X s  covers about 95% possible values of X . 

In other words, the probability that the actual values of X  fall into the interval 

[ 2 , 2 ]X s X s   is about 95%.  

If we report our experimental result in the form of 2X s , we expect that the true 

value that was measured has a 95% chance to reside in [ 2 , 2 ]X S X S  . We can then 

define the uncertainty term as 

 2U s   (6) 

 

 

Fig. 3. PDF of a normal random variable 
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Example 2 The angular velocity 
AB  of link AB of the mechanism shown in Fig. 2 is 

measured, and the ten measurements are given in Example 1. Report the measurement 

result in a standard form. 

In Example 1, we have obtained the average 3.99 rad/sX   and the standard 

deviation 0.0204 rad/ss  . The uncertainty term is then 

 2 2(0.0204) 0.0408 rad/sU s      

Using the same number of significant figures as X , we have 

 0.04 rad/sU     

The measurement result is then stated as  

 3.99 0.04 rad/sAB      

With the result, we expect that the chance of the true angular velocity 
AB  being 

within [3.95,  4.03] rad/s is 95%. 

4. Combined Uncertainty 

In the last example, uncertain comes from only one source. If uncertainty is from 

multiple independent sources, we should combine their effects by using the following 

equations.  

Assume that random variables 1X  and 2X  are independent and that their standard 

deviation are 1s  and 2s , respectively. The standard deviation of 21X X  is then given by 

 
2 2

1 2s s s    (7) 

Then the combined uncertainty term is 

 
2 2

1 22 2U s s s     (8) 

Let the uncertainty terms associated with  1X  and 2X   be  1U  and 2U , respectively. 

The combined uncertainty term can then be rewritten as 

 
2 2

2 2

2 2

1 12 (2 ) (2 )U s s s s      (9) 

or 

 
2 2

1 2U U U    (10) 
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We can generalize the result to a general case with 1 2, , , nX X X  

 
2

1

n

i

i

U U


    (11) 

Example 3 The angular velocity 
AB  of link AB of the mechanism shown in Fig. 2 is 

measured, and the ten measurements are given in Example 1. The measuring equipment 

manufacturer claims an accuracy of 0.03 rad/s  on the equipment readout. This accuracy 

is assumed at 95% confidence. Estimate the overall measurement uncertainty and report 

the measurement result in the standard notation. 

There are two sources of uncertainty. We have found the uncertainty term from 

random fluctuations 1 0.04 rad/sU   in Example 2. The other source of error is from the 

measuring instrument itself with 2 0.03 rpmU  . According to Eq. (11), the combined 

overall uncertainty term is  

 2 2 2 2

1 2 0.04 0.03 0.05 rad/sU U U        

Then the measurement result is stated as 

 3.99 0.05 rad/sAB      

  

5. Uncertainty Propagation 

Measured quantities may be used for an analysis. Let the measured quantities be 

1 2( , , , )nX X XX  and the output of the analysis be Y . Also assume ( )Y f X . From 

experiments, we have  ( 1,2, , )i i iX X U i n   . 

Uncertainties in 1 2( , , , )nX X XX  will be propagated to Y through ( )f  . Our task 

is to find YY U . 

We start pour discussions from a linear function. 

 

0 1 1 2 2

0

1

( ) n n

n

i i

i

Y f c c X c X c X

c c X


     

 

X

  (12) 

where ( 1,2, , )ic i n  is constant. 

If 1 2, , , nX X X  are independent, we have  
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0

1

n

i i

i

Y c c X


    (13) 

where X   is the average of iX  . 

The standard deviation of Y  is  

 
2 2

1

n

Y i i

i

s c s


    (14) 

where is  is the standard deviation of iX , and 2i iU s . 

Since 2Y YU s , we obtain  

 
2 2

1

n

Y i i

i

U c U


    (15) 

We now look at the general case where ( )Y f X  is a nonlinear function. To use the 

results we have obtained for a linear function, we linearize ( )f   at the means of X , 

1 2( , , , )nX X XX  as  

 
1

( ) ( )
n

i i

i i

f
Y f X X

X


  




X

X   (16) 

where ( )f X  and 
i

f

X




X

 are all constant. We then have  

 ( )Y f X   (17) 

and  

 
2 2

1

n

Y i i

i

s c s


    (18) 

where i

i

f
c

X





X

. 

The uncertainty term for Y   is the same as given in eq. (15). 

Example 4 The angular velocity AB  of link AB of the mechanism shown in Fig. 2 (The 

figure is redrawn in Fig.4 for convenience) is measured, and ten measurements are given 
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in Example 1. The measuring equipment manufacturer claims an accuracy of 0.03 rad/s  

on the equipment readout. This accuracy is assumed at 95% confidence. The measured 

value of the length of link AB is 100.0 0.1mmABL  . Determine the velocity of the 

slider Cv , and state the result in the standard notation. 

 

Fig. 4 Slider Mechanism 

Let 1 ABX   and 2 ABX L . Then 1 3.99 rad/sX   and 
1 0.05 rad/sU  . The result was 

obtained from Example 3. 2 100.0 mmX   and 2 0.1mmU  . 

We now perform kinematics analysis to find cv  . The function for cv   is given by  

 1 2

1 1
( )

cos 45 cos 45
C AB ABY v f L X X

 
   X    

 1 2

1 1
( ) (3.99)(100.0) 564.3 mm/s

cos 45 cos 45
Y f X X

 
   X   

 1 2

1

1 1
(100.0) 141.4214

cos 45 cos 45
X

f
c

X  


   


   

 2 1

2

1 1
(3.99) 5.6427

cos 45 cos 45

f
c

X
X

 


   


   

 2 2 2 2 2 2 2

1 1 2 2 141.4214 (0.05) 5.6427(0.1) 7.09 mm/sYU c U c U        

The velocity of the slider is then reported as  
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 564.3 7.1mm/sCv     

6. Conclusions  

The measurement error is the difference between the quantity being measured and its 

true value. The measurement error consists of systematic error and random error. The 

measurement error can be characterized by uncertainty analysis, and the measurement 

results is commonly stated in the form of X U , where X  is the best estimate (usually 

the average of repeated measurements), and U  is the uncertainty term with a stated 

confidence level (usually 95%). 

When a measured quantity is used in an analysis, the effect of the uncertainty in the 

measurement quantity on the analysis result can be quantified through uncertainty 

propagation, which is often based on the first order Taylor expansion. 

 


