Robust Design and Reliability-Based Design

ME 4761 Engineering Design 2015 Spring Xiaoping Du

MISSOURI

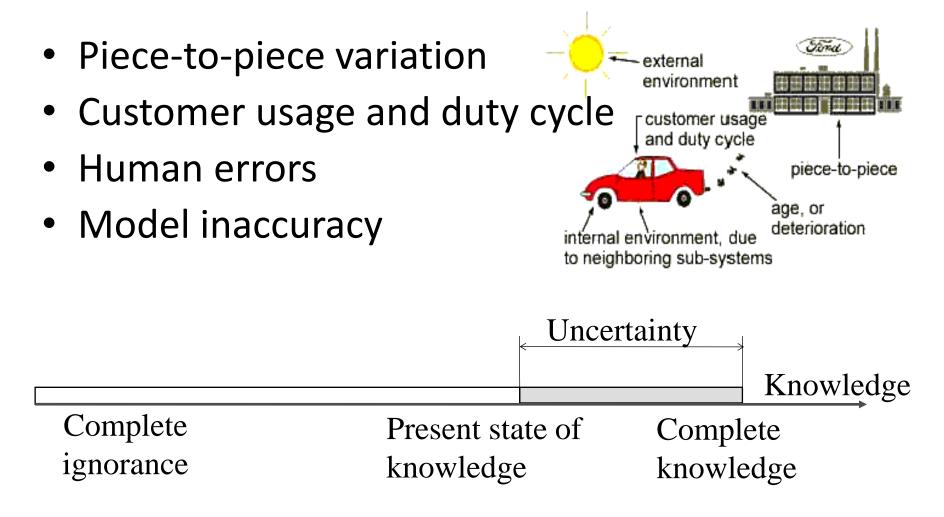
Founded 1870 | Rolla, Missouri

MISSOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY

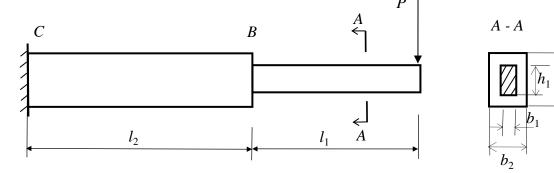
Outline

- Definition of robustness
- Introductory examples
- Statistics
- How to achieve robustness
- Examples
- Related methodology: reliability-based design
- Conclusions

Robust Design


- If a design can work properly even when subjected to variation, it is robust.
- Variation (uncertainty) may be introduced by
 - manufacturing processes
 - environment
 - parts from outside suppliers
 - end user

Sensitive to variation	Robust


Robustness

- The robustness of a product is the ability that its performances are not affected by the uncertain inputs or environment conditions (noises).
- Robustness is insensitivity to uncertainty.
- A robust product can work under large uncertainties.

Variation (Uncertainty)

An Example: Cantilever Beam

The material strength S

The maximum stress
$$\sigma_{\text{max}} = \frac{6P(l_1 + l_2)}{b_2 h_2^2}$$

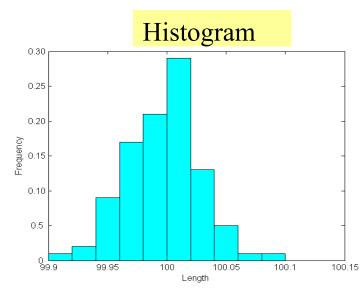
Factor of safety $F_s = \frac{S}{\sigma_{\text{max}}} > 1$

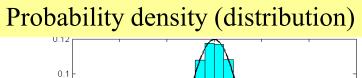
Reality: everything is uncertain Load: P=(2001.4, 1531.3, 2534.6,) kN Yield strength: Sy=(120.5, 101.3, 131.2, 170.9,...) MPa Dimension: h_1 = 100±0.01 mm Dimension: b_1 = 50±0.01 mm,

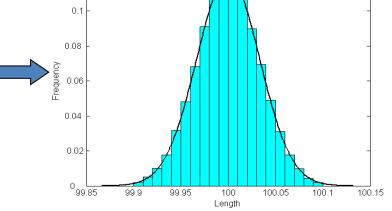
Principle of Robust Design

- Minimize the effect of uncertainty (variation) without eliminating the cause of uncertainty.
- How?
- By changing design variables to make the performance not sensitive to uncertainty.

Example: Tile Manufacturing

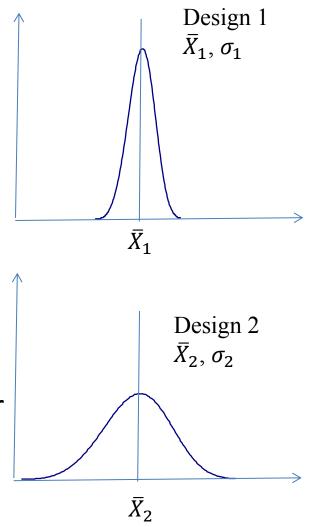

- Output: Tile dimensions
- Problem: Large variability in dimensions
- Uncertainty source: Huge variation in temperature
- Possible solutions
 - Screening
 - Redesign the kiln
 - Too expensive
- Robust design solution
 - Do not control the temperature
 - Change design variables: increasing the lime content of the clay from 1% to 5%
 - Inexpensive


Benefits of Robust Design


- Product performance insensitive to material variation -> use of low grade material and components
- Product performance insensitive to manufacturing variation -> reduced labor and manufacturing cost
- Product performance insensitive to the variation in operating environment -> higher reliability and lower operation cost

How Do We Quantify Uncertainty?

- Support we have 100 measurements for $X = L_1$
- (99.99, 100.08,...,100.05) mm Average Dispersion Mean $\overline{X} = \frac{1}{100} \sum_{i=1}^{100} x_i = 99.96$ Standard deviation $\sigma = \sqrt{\frac{1}{100-1} \sum_{i=1}^{n} (x_i - \overline{X})^2}$



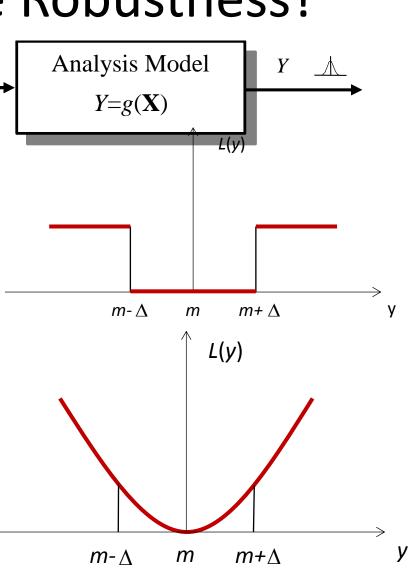
Probability Distribution

- Mean average
- Standard deviation (std) dispersion around the average or amount of variation
- Two designs with two performance variables
- $\bar{X}_1 = \bar{X}_2, \sigma_2 > \sigma_1$
- Designs 1 and 2 have the same average performance
- The variation of Design 1 is smaller
- Design 1 is more robust

TV Example

- In 1970s, Americans showed a preference for television sets made by Sony-Japan over those made by Sony-USA.
- The color density was a major performance.
 Target ± tolerance = m ± 5.
- Sony-Japan sets: 0.3% defective sets (outside the tolerance limits)
- Sony-USA sets: virtually NO sets outside the tolerance limits.
- Why?

TV Example


- Sony-USA: Uniform distribution, $\sigma = 2.89$
- Sony-Japan: Normal distribution, $\sigma = 1.67$, and most of the sets are grade A.

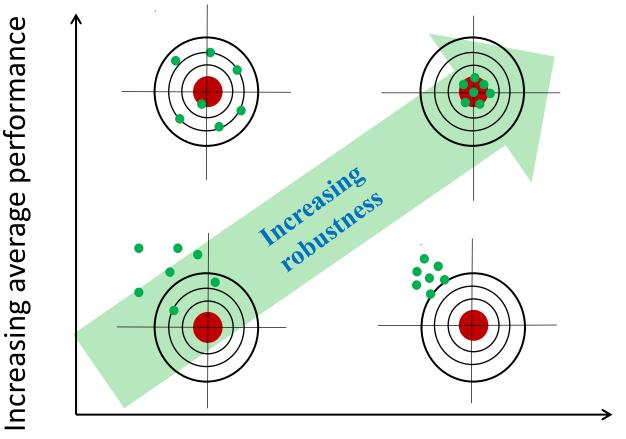
How to Evaluate Robustness?

X

- Traditional design *m*: target, Δ: tolerance *L(y)*: quality loss = 0 within the tolerance limits

 Robust design
 - Taguchi's quality loss (\$) $L(y) = k(y - m)^2$, k: constant
 - quality loss = 0 only at m

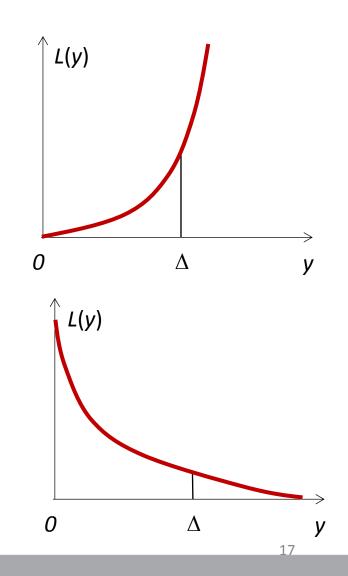
Expected Quality Loss


• Expected (average) quality loss

$$E(L) = k[(\overline{Y} - m)^2 + \sigma_Y^2]$$

• Minimizing E(L) will bring the average performance to the target and reducing variation σ_Y simultaneously. Target

Robust Design


Decreasing variation

Other Types of Quality Loss

- What we've discussed is the "nominal-the-better" type
- The "smaller-the-better" type
 cost, stress, energy consumption

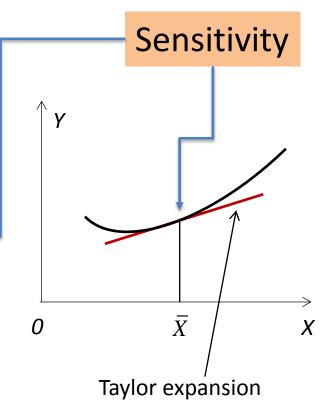
The "larger-the-better" type

 life, reliability, strength, efficiency

How to Select Design Variables to Achieve Robustness?

- Performance $Y = g(X_1, X_2, ..., X_n)$
- Design variables $\overline{\mathbf{X}} = (\overline{X}_1, \overline{X}_2, \dots, \overline{X}_n)$
- X_i ($i = 1, 2, \dots, n$) are independent

Parameter Design


- Average performance $\overline{Y} = f(\overline{X}_1, \overline{X}_2, ..., \overline{X}_n)$
- Taylor expansion series

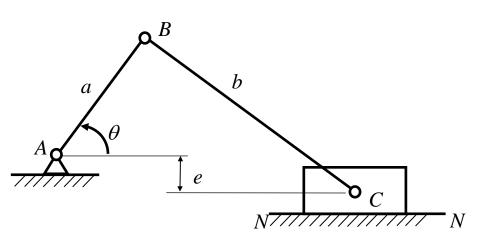
•
$$Y \approx \overline{Y} + c_1(X_1 - \overline{X}_1) + c_2(X_2 - \overline{X}_2) + \cdots + c_n(X_n - \overline{X}_n)$$

•
$$c_i = \frac{\partial g}{\partial X_i}$$
 at $\overline{\mathbf{X}} (i = 1, 2, \dots, n)$

- Std $\sigma_Y = \sqrt{c_1^2 \sigma_1^2 + c_2^2 \sigma_2^2 + \dots + c_n^2 \sigma_n^2}$
- Change $\overline{\mathbf{X}}$ (not reduce σ_i) to minimize

$$E(L) = k[(\overline{Y} - m)^2 + \sigma_Y^2]$$

More about Sensitivity


Example: Robust Mechanism Synthesis

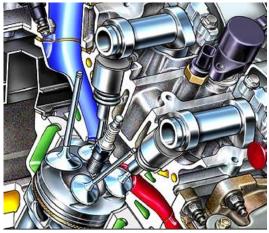
• Requirements:

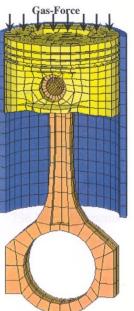
 $s = m_1 = 350 \text{ mm}$ when $\theta = 10^{\circ}$

 $s = m_2 = 250 \text{ mm}$ when $\theta = 60^{\circ}$

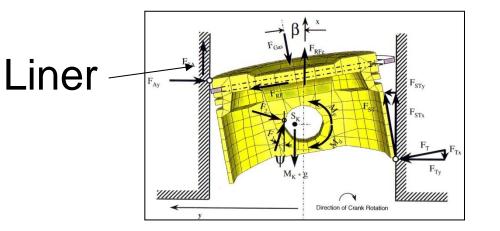
- Uncertainties in *a*, *b*, and *e* $\sigma_a = 2 \text{ mm}, \sigma_b = 2 \text{ mm}, \sigma_e = 3 \text{ mm}$
- Design variables $\overline{a}, \overline{b}, \overline{e}$

Results


$$s = a\cos\theta + \sqrt{b^2 - (e + a\sin\theta)^2}$$


Transmission angle > 45°

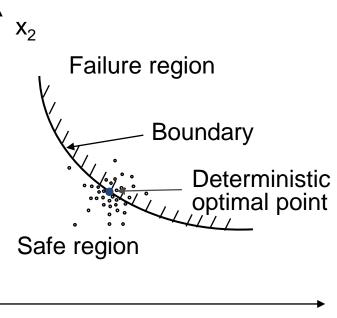
Minimize
$$\sum_{i=1}^{2} k[(\bar{s}_i - m_i)^2 + \sigma_{si}^2]$$


Method	Deterministic Design	Robust Design
\overline{a} (mm)	119.6	136.6
\overline{b} (mm)	241.3	216.8
<i>ē</i> (mm)	45.0	0.0
$ar{s}$ ($ heta=10^\circ$) (mm)	350	350
\bar{s} ($ heta$ = 60°) (mm)	250	250
σ ($ heta=10^\circ$) (mm)	2.9	2.8
σ ($ heta=60^\circ$) (mm)	3.5	3.1

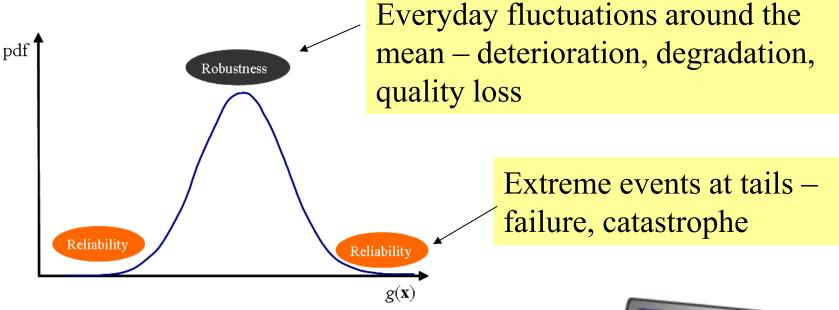
Example 2 - Piston Engine Robust Design

ifter)		TDC, 360°	
-30*	30'	330*	390*
-60*	60*	300*	420*
-90*	90*	270	450*
-120*	150,	240*	4804
-150*	150'	210*	510*
	BDC, 180		80C, 540

min	$W_1\mu_f + W_2\sigma_f$	f – Slap
μ_{X}	5	noise
<i>s.t. P</i>	$\{G < 7\} \ge 0.99$	G - Friction


	Baseline	Optimal
Mean of f	54.5 dB	54.2 dB
Std of f	2.04 dB	0.76 dB
Prob	0.65	0.99

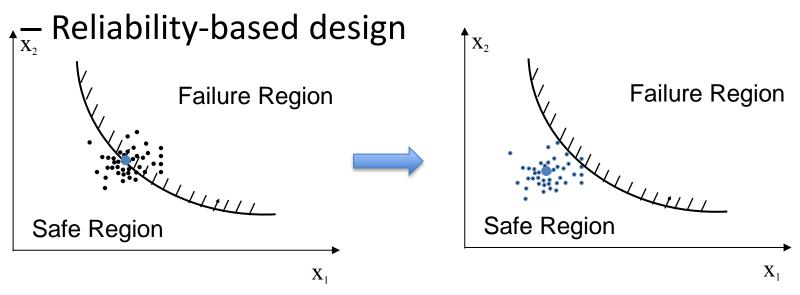
Other Method Operating Window Methods


- Developed by Xerox.
- The operating window is the set of conditions under which the system operates without failure.
- A wider window can accommodate larger uncertainties.
- Robustness is achieved by making the operating window larger.

Related Issue: Reliability (R)

- The ability of a product performing its intended function
- R =probability of no failure
- *R* = Pr{design points falling into safe region}
- *R* = Pr{strength > stress}
- *R* = Pr{factor of safety > 1}

Reliability vs. Robustness



- Reliability issue
 - Motherboard failure
 - Broken hard disk
- Robustness issue
 - Overheating
 - Noise

How to Design for Reliability?

- Conceptual design
 - Failure mode and effects analysis (FMEA) (IDE 20 & ME 161)
- Parameter design

Software Tools

- iSIGHT
- MSC Robust Design
 - Robust Design for Whirlpool Products
 - <u>http://www.mscsoftware.com/success/details.cfm</u> ?Q=285&sid=282
- Ansys Monte Carlo Simulation
- ADAMS Design of Experiments

Conclusions

- Robust design -> insensitivity to uncertainties
 - Insensitive to material variations-> use of low grade materials and components -> low material cost
 - Insensitive to manufacturing variations -> no tightened tolerances -> low manufacturing and labor cost
 - Insensitive to variations in operation environment -> low operation cost
- Robust design -> increased performance, quality, and reliability at reduced cost
- Robustness and reliability can be built into products during early stages of design.

More Information

- Visit the website of Engineering Uncertainty Repository at <u>http://www.mst.edu/~dux/repository</u>.
- Contact me
 - Toomey Hall 272
 - <u>dux@mst.edu</u>