

1. A cantilever beam is subject to two random, forces $P_x \sim N(4000,250^2) \, N$ and $P_y \sim N(2000,150^2) \, N$ at the tip as shown. The allowable deflection of the beam is $d_o = 0.025 \, \mathrm{m}$. The beam has the dimensions of $L = 1.5 \, \mathrm{m}$, $b = 0.05 \, \mathrm{m}$, and $h = 0.1 \, \mathrm{m}$. The Young's Modulus is $E = 210 \, \mathrm{GPa}$. If P_x and P_y are independent, find the probability of failure of the beam.

Hint:
$$g = d_o - \frac{4L^3}{E} \sqrt{\left(\frac{P_x}{b^3 h}\right)^2 + \left(\frac{P_y}{b h^3}\right)^2}$$

Solution

[See Matlab code]