
Chapter One 

Introduction 

 

1.1 Introductory Comments 
 

Nowadays engineers are facing new and emerging challenges. Examples of these 

challenges include the intensive use of computational simulations and virtual prototyping, 

the application of new technologies into complex systems, the requirements of high 

quality and reliability, and the reliable decision-making under uncertain design 

environments. Conventional design methods are inadequate to deal with these challenges. 

Therefore, nontraditional design methods such as probabilistic engineering design have 

been increasingly developed and used in industrial applications. 

 

How to deal with uncertainty in engineering is one of the challenges. Uncertainty is 

ubiquitous in any engineering systems and at any stages of product development. 

Examples of uncertainty include manufacturing imprecision, usage variation, and 

imperfect knowledge. To manage various uncertainties, engineers have increasingly 

applied probabilistic and statistical methods as an integral part in analysis and design 

activities. However, because graduating engineers typically are not readily equipped with 

practical knowledge of probabilistic and statistical methods, companies have to provide 

them with intensive internal training. It is essential for modern engineers to be armed 

with basic probabilistic and statistical tools for solving complex engineering problems in 

the face of uncertainty. 

 

This course aims at exploring computational methodologies for engineering design under 

uncertainty. It is intended for undergraduate seniors and graduate students who are 

interested in statistical/probabilistic methods and design optimization in engineering 

analysis and design. It covers reliability analysis, analytical robustness assessment, robust 

design, reliability-based design, and their engineering applications. Associated outcomes 

include 1) an ability to model uncertainties for engineering analysis and design, 2) an 

ability to apply knowledge of statistics and probability to engineering design, 3) an ability 

to integrate robust design and reliability-based design with CAD/CAE simulations, 

design optimization, and Design of Experiments (DOE), and 4) an ability to use 

probabilistic and statistical methods for Design for Six Sigma.  
 

The following specific topics will be covered: 

 

1. Uncertainty modeling – fundamentals of probability and statistics 

2. Uncertainty  analysis – analysis methodologies that quantify the effect of 

uncertainty on design performances 
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 Reliability analysis 

 Monte Carlo simulation 

 Sensitivity analysis 

 Robustness assessment 

3. Probabilistic design – design methodologies that manage and mitigate the effect 

of uncertainty 

 Introduction to design optimization 

 Reliability-based design 

 Robust design 

 Integrated probabilistic design 

4. Case study in Industry (automotive, structural, and mechanical applications) 
 

In this chapter, the basic concepts of engineering design and design process will be 

discussed first, followed by the introduction to the fundamentals of probabilistic 

engineering design. In the subsequent chapters, we will primarily discuss three major 

topics: 1) uncertainty modeling with the application of probability theory, 2) uncertainty 

analysis that quantifies the effects of uncertainty, and 3) probabilistic engineering design 

that manages and mitigates the effects of uncertainty.  

 

1.2 Engineering Design and Engineering Design Process 
 

There are many definitions about engineering design. Two of them are listed below. 

 

Engineering design is a process that establishes and defines solutions to new engineering 

problems, which have been solved before, or new solutions to engineering problems, 

which have previously been solved, in a different way. The key word is new problems or 

new solutions. 

 

Engineering design is the process of devising a system, component, or process to meet 

desired needs [1]. It is a decision-making process (often iterative), in which the basic 

science, mathematics, and engineering sciences are applied to convert resources 

optimally to meet a stated objective. The key of this definition is decision-making.  

 

A general engineering design process involves the following major phases [1-4]. 

 

Phase 1: Problem definition – to collect customer needs, clarify design objectives, 

establish user requirements, and identify constraints.  

 

Phase 2: Conceptual design – to establish functions and design specifications, generate 

design concepts (alternatives), evaluate design concepts, and select the best design 

concepts. 
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Phase 3: Embodiment design – to engineer a solution principle for the selected design 

concepts by determining the general arrangements and preliminary shapes and materials 

of all components. Embodiment design is also called preliminary design. 

 

Phase 4: Detail design – to specify all the details of the final design and produce 

manufacturing drawings and documentation. 

 

The engineering design process is demonstrated in Fig. 1.1. The input of the design 

process is the customer needs, and the output of the design process is the final design, 

including manufacturing specifications and all the documentations. The process is 

dynamic and iterative. Rework is needed among the design phases before a satisfactory 

final design is reached. 
 

 

 
 

Figure 1.1 General Design Process 

 

 

1.3 Design and Analysis 
 

Engineering analysis is the study of a design, especially for a product, to understand or 

model its performance under the conditions of its normal use. It is typically performed on 

potential designs before they are built or when a product does not meet an expectation. 

The analysis creates an understanding that allows for improvements in the design and 

corrections of performance problems. In a design process, analysis is performed to check 

if an existing design satisfies all the design requirements. Table 1.1 lists the differences 

between design and analysis. 

 

For example, if a task is to determine a mechanism system that satisfies the functional 

requirement ( )y f x , in which x and y are input and output rotational displacements,  

respectively. It is a design task because there are multiple solutions to this new problem, 

Phase 1 
Problem clarification 

Phase 3 
Embodiment design 

 

Phase 4 
Detailed design 

 

Phase 2 
Conceptual design 
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and many decisions need to be made, such as the materials, the design options, the 

geometry, dimensions, etc. Figure 1.2 shows several possible design options to the 

problem, including a four-bar linkage, a cam-follower mechanism, and a pair of gears. 

 

Table 1.1  Differences between Design and Analysis 

 

Design Analysis 

A decision making process A problem solving process 

Solutions to new problems or new solutions 

to  existing problems 

Solutions to existing problems 

More than one solution Only one unique solution 

 

 

 
 

Figure 1.2 Multiple Potential Solutions 

 

Let us look at the reverse problem. A four-bar linkage mechanism has been identified as 

shown in Figure 1.3. The task is to find the output angle y given the input angle x. This 

task is an analysis problem because there is only one unique solution to this existing 

system, and it is a problem solving process where algebraic equations derived from 

kinematics are used to find the solution. 
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Figure 1.3 Four-Bar Mechanism 

 

We have seen the differences between design and analysis. In a real engineering design 

process, design and analysis are also tied to each other. A design involves a number of 

analyses as shown in Fig. 1.4.  After having generated a number of design concepts, 

engineers perform analyses on the design concepts. Then they use the analysis results to 

make decisions on selecting the best design concepts in terms of design performance. 

After the concept selection, engineers make more decisions in order to detail and refine 

the selected design. If the design is not considered satisfactory, they will use the analysis 

results to improve and update the design by making necessary changes on material 

selections, configurations, component interfaces, parameters, and so on. The process 

iterates until a satisfactory design is identified. During this process, numerous decisions 

are made. 

 

 

 
Figure 1.4 Analysis in A Design Process 

 

On the other hand, a single analysis may also contain other design tasks. For example, 

solving a mathematical equation is an analysis problem. Designing and selecting 

algorithms to solve the equation is a design problem. 

 

 

1.4 Analysis Model 
 

With the advancements of computational tools and the demand of shortening product 

design to market, engineers increasingly rely on mathematical and simulation models. 

These models can provide a flexible and cheap means to explore and examine design 

alternatives before physical deployment. With this fundamental paradigm shift, product 
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development is moving toward an engineering process where decisions are heavily based 

on computational simulations with decreasing physical experiments. 

 

 
Analysis Model 

 

y = g(x) 

x y 

 
 

Figure 1.5 A Design/Analysis Model 

 

An analysis model is shown in Fig. 1.5 and is given by 

 

 ( )y g x  (1.1) 

 

In Eq. 1.1, x is a vector of input variables. x may contain design variables (e.g. the 

diameter of a shaft) that can be controlled and changed during the design process, or 

design parameters (e.g. the temperature of the environment) that can not be controlled. In 

general, x is the mixture of design variables and design parameters. y is an output or 

response variable which is dependent on x. y is usually a design performance, such as the 

cost and maximum stress.   

 

( )g   is the functional relationship between input x and output y. In complex engineering 

design, ( )g   may not have an analytic formula. The output is obtained through numerical 

calculations or simulations. This kind of model is usually called a black-box model. 

Examples of black-box models include those of finite element analysis, dynamics 

simulation, and computational fluid dynamics. In product development such as a vehicle 

design, sophisticated engineering computer models are eminent. Different from a 

scientific model that is to fit extant data, an engineering model is primarily used to 

predict future performances (behaviors) before a physical product is made. 

 

Analysis models are important for many reasons. (1) Significant upfront design decision-

making occurs prior to the availability of physical prototypes. Such design-making relies 

heavily on the predictions of design performances from the models. (2) Physical testing 

can be expensive, time consuming, harmful, or even, in some situations, prohibitive. (3) 

Engineers use models to gain some insights into certain phenomena, which may be 

lacking from physical experiment due to measurement system limitations or its 

practicality.   

 

In this class, we will focus on model-based engineering design where engineers use 

analysis models to predict product performances and make design decisions. 
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1.5 Where Does Uncertainty Come From? 
 

Uncertainty can be viewed as the difference between the present state of knowledge and 

the complete knowledge (see Fig. 1.6). In the context of model-based design, uncertainty 

is the difference between the model prediction and reality. Uncertainty is usually 

classified into aleatory and epistemic types. 

 
Figure 1.6 Uncertainty types 

 

Aleatory uncertainty, also termed as objective or stochastic uncertainty, describes the 

inherent variation associated with a physical system or environment. This kind of 

uncertainty arises from complex physical phenomena, including variations in 

temperature, material properties, usage conditions, dimensions of a product caused by 

manufacturing imprecision, etc. Since uncertainty is a result from natural variability, 

aleatory uncertain is irreducible. Aleatory uncertainty is usually modeled as randomly 

distributed quantities that can take values in an established or known range, but the exact 

values will vary by chance from unit to unit or from time to time. 

 

Epistemic uncertainty is derived from some level of ignorance or incomplete information 

about a physical system or environment. Epistemic uncertainty is subjective in nature and 

arises primarily from limited knowledge. The key feature is that the fundamental source 

of epistemic uncertainty is incomplete information or incomplete knowledge of some 

characteristics of the system or the environment. In short, epistemic uncertainty is due to 

the lack of knowledge. Epistemic uncertainty is reducible. The degree of uncertainty can 

be reduced if more knowledge is acquired or more data are collected.  

 

Uncertainty is also conveniently classified into parameter uncertainty and model 

structure uncertainty. Parameter uncertainty is due to limited information or the inherent 

variation in the physical system or environment in estimating the characteristics of 

parameters. As shown in Fig. 1.6, uncertainty associated with a parameter can be aleatory 

(due to the inherent variation) or epistemic (due to limited information). For example, if 

the diameter of a shaft varies around its nominal value within the specified tolerance with 

a normal distribution, the parameter uncertainty associated with the diameter is aleatory. 

In another example, engineers do not have enough information about the coefficient of 

friction between two materials. What they can estimate is that the coefficient of friction is 

within a range between 0.1 and 0.35. But they do not know how the values of the 

Epistemic uncertainty Aleatory uncertainty 

Uncertainty 

Present state of 

knowledge 
Complete 

ignorance 

Parameter uncertainty Model structure uncertainty 

Knowledge 

Complete 
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coefficient of friction are distributed within the range. Due to the lack of knowledge, the 

parameter uncertainty associated with the coefficient of friction is epistemic. If engineers 

perform more analyses or experiments, the estimate of coefficient of friction will be more 

precise and the range will be narrower or reduced to a single value. The epistemic 

parameter uncertainty will then be reduced or eliminated. 

Model structure uncertainty is the uncertainty in the model structure itself, including 

uncertainty in the validity of the assumptions underlying the model. The uncertainty 

associated with a model structure is a special type of epistemic uncertainty, which comes 

from assumptions or a lack of knowledge in the model building process. 

 

The classification of uncertainty is summarized in Fig. 1.7. 

 

 

Uncertainty

Aleatory Uncertainty Epistemic Uncertainty

Aleatory Parameter 

Uncertainty

Epistemic Parameter

Uncertainty

Model Structure 

Uncertainty

Uncertainty

Aleatory Uncertainty Epistemic Uncertainty

Aleatory Parameter 

Uncertainty

Epistemic Parameter

Uncertainty

Model Structure 

Uncertainty

 
 

Figure 1.7 Classification of Uncertainty 

 

 

To better understand the concept of uncertainty, let us look at a simple beam design 

example (see Fig. 1.8). The design variables that are to be determined are the cross-

sectional dimensions, including widths b1 and b2, heights h1 and h2, and lengths l1 and l2. 

A vertical external force P applies at the tip of the beam. The yield strength of the beam 

material is S.  
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Figure 1.8 A Cantilever Beam 

 

To make the design feasible, it is necessary to calculate the maximum stress max  and 

make sure that it is less than the yield strength S. The analytical model ( )y g x  for the 

design margin is defined by the difference between the strength and stress, namely, 

 

 1 2
max 2

2 2

6 ( )
( )

P l l
y g S S

b h



    x  (1.2) 

 

where  1 2 1 2 1 2, , , , , ,b b h h l l Sx  and the maximum stress max is derived from the basic 

beam theory as 

 

 1 2
max 2

2 2

6 ( )P l l

b h



  (1.3) 

 

Parameter uncertainty: Due to the manufacturing imprecision, the dimension variables 

b2, h2, l1, and l2 in Eq. 1.2 are random variables, varying within the tolerance around their 

nominal values. All the dimension variables are normally distributed, and the parameter 

uncertainty associated with them is aleatory. Due to the varying operational environment, 

the external force P is also an uncertain variable. If there are adequate data (samples), P 

can be described mathematically with a random distribution. In this case, P has aleatory 

parameter uncertainty. However, if the data are scarce, P may not be precisely modeled 

by a random distribution. Then epistemic uncertainty also exits. Similarly, the material 

property, the strength S, is also subject to uncertainty. For the same reason, the parameter 

uncertainty of S may be either aleatory or epistemic. Because of the input parameter 

uncertainties in x, the model prediction y is also subject to uncertainty. 

 

Model structure uncertainty: Eq. 1.2 is derived from the basic beam theory based on 

several idealized assumptions, such as (1) the material is isotropic and homogenous; the 

material is also linearly elastic; (2) plane sections remain plane under a load; (3) the 

moduli of elasticity in tension and compression are identical; and (4) the support of the 

beam at C is perfectly rigid.  The assumptions may not be completely valid, and therefore 

the prediction of the design margin in Eq. 1.2 will be different from the true value. This 

indicates the existence of model structure uncertainty. Model structure uncertainty is a 

h1 h2 

b2 
b1 

l2 l1 

P 
A 

A 
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special type of epistemic uncertainty. If a more sophisticated model is used, the 

prediction will be closer to the reality, and the model uncertainty will then be reduced. 

 

It is worthwhile to note that numerical errors also exist in model-based predictions. If 

numerical methods such as finite element analysis are used to solve the maximum stress 

max , the solution may not be identical to the solution from the theoretic model in Eq. 

1.3. The numerical error is the difference between the numerical solution and the 

analytical solution (accurate solution). 

 

The above concepts are further demonstrated by the following vehicle crashworthiness 

design example (Fig. 1.9). Finite element models play an integral part in the vehicle 

crashworthiness design, which involves uncertain parameters such as those of geometry 

(shape, thickness, and tolerances), material properties (elasticity, yield strength, and 

damping), and loading. Some parameters (e.g. tolerances) are random variables with 

aleatory uncertainty and their probability distributions are precisely known. Other 

parameters are epistemically uncertain because the knowledge about them is imprecise. 

For example, the most significant epistemic parameter uncertainty is that of the contact 

resistance, which is assumed to lie in an interval due to a lack of knowledge [5]. Another 

significant uncertainty is the model structure uncertainty, a special type of epistemic 

uncertainty, caused by the linear approximation for stress and strain and by other 

assumptions [5, 6]. With the model structure uncertainty, proving ground tests (Fig. 1.9) 

are required to verify that the model-based design meets the mandated crashworthiness 

standards. There are also many sources of uncertainty in the vehicle manufacturing 

process and proving ground tests that, in turn, induce experimental uncertainty in the test 

results, which also contain both aleatory and epistemic uncertainties. 

 

 

 
 

Figure 1.9 Vehicle Crash Simulation (left) and Proving Ground Test (right) 

(Courtesy of Ford Motor Company) 
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Probability theory is commonly used to quantify aleatory uncertainty. Quantifying and 

managing epistemic uncertainty (epistemic parameter uncertainty and model structure 

uncertainty) needs more advanced mathematical theories [7]. It is still an ongoing 

research topic in both academia and industry. In this class, we will primarily focus on 

aleatory parameter uncertainty. 

 

1.6 What is Probabilistic Engineering Design? 
 

As discussed above, engineers increasingly rely on analysis (simulation) models. Unlike 

scientific models of nature developed to fit extant data, engineering analysis models are 

intended to predict future performance of systems. Uncertainties are considerable, and 

they cannot be controlled or minimized beyond modest limits. Thus, it is important to 

quantify and manage uncertainty inherent in engineering design. Probabilistic 

engineering design is a design methodology that meets such a need. 

 

Probabilistic engineering design is a mathematically based design methodology for 

producing high quality products. The features of probabilistic engineering design include 

 

 Using probability theory to quantify and treat uncertainties 

 Accommodating uncertainties and mitigating the effects of uncertainties 

 Ensuring high robustness, reliability, and safety 

 Integrating optimization with mathematical or CAE (Computer Aided 

Engineering) simulation models 

 Combining Design of Experiments in many engineering applications 

 

Typical methods of probabilistic engineering design include 

 

 Reliability-based design (RBD) 

Reliability-based design seeks a design that has a probability of failure less than 

some acceptable (invariably small) value and therefore ensures that the events that 

lead to catastrophe are extremely unlikely. The focus is the higher reliability 

(safety) and lower risk. 

 

 Robust design 

Robust design is a method for improving the quality of a product through 

minimizing the effect of uncertainty without eliminating the causes of uncertainty. 

The focus is the robustness of the product performance. 

 

 Design for Six Sigma (DFSS) 

Design for Six Sigma is a comprehensive approach to product development that 

links business and consumer needs to critical product attributes, product 

functions, detailed designs, tests, and verification. The focus is the product 

quality, customer satisfaction, and competitiveness. RBD and robust design are 

usually employed in DFSS. 
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1.7 The Effects of Uncertainty on Product Performance 
 

Uncertainty associated with parameters, model structures, and numerical errors has a 

significant impact on design performances. The ignorance or inappropriate treatment of 

uncertainty may lead to  

 

 Erroneous decision-making, 

 Low quality, robustness, reliability, safety, 

 High risk, 

 High cost of product-life cycle, 

 Costly warranty, 

 Over-designed (conservative) products, 

 Low customer satisfaction, and 

 Catastrophic consequences  

 

For example, if a product is not robust, the product performance will be sensitive to the 

variation of system inputs. As a result, small variations of system inputs such as the 

imprecision of manufacturing may lead to a large variation in product performance. A 

large variation in performance means low quality and will consequently results in low 

customer satisfaction. In addition, if a product is not reliable, the chance of failure will be 

relatively high. Catastrophic events may occur when the product fails.   

 

 

1.8 Why Does An Engineer Need to Know Probabilistic Engineering 
Design? 

 

Traditionally, engineering design has been performed on a deterministic basis as if 

everything could be calculated with certainty through formulae or simulations that 

modeled nature with absolute precision. Due to this belief, engineers are typically trained 

through the courses where the analysis models are formulated ideally in such a way that 

there are no variations. Given a deterministic input, there always exists a deterministic 

output. 

 

As we have seen previously, uncertainty exists in every engineering system. It impacts 

the product performance significantly. A small variation of system input may cause a 

huge quality loss. The ignorance of uncertainty may lead to catastrophic failure events. 

To accommodate uncertainty, the common practice is the use of a factor of safety. It has 

long been customary for engineers to modify their design with “arbitrary” factors of 

safety so that bridges would not collapse and machines would not break down. It is 

evident that the use of factors of safety may be either risky (under-designed) or 

conservative (over-designed). 
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With the intensive requirement of high product quality, the more complex computer 

simulations are increasingly being used, and more complicated decision making is 

required during a design process. The need of uncertainty consideration in engineering 

design has become imperative. Probabilistic and statistical based design methods, such as 

Design of Experiments (DOE), robust design, reliability-based design, and Design for Six 

Sigma (DFSS), have been used in industry to meet such a need. A typical example is the 

vehicle development process, where vehicle program managers are continually 

challenged with tasks with the presence of uncertainties. The typical tasks include 

integrating uncertain information across a large number of functional areas, assessing 

program risk relative to business goals, and then making program-level decisions. In the 

mean time, engineers struggle to develop design alternatives facing with uncertainties in 

design and analysis models, manufacturing processes, and environment. They must 

provide the program managers with credible, timely, and robust estimates of design 

related vehicle performance [8]. For many engineers in other industries, applying 

nondeterministic approaches to handle uncertainty has also become a part of their routine 

job.   

 

 

1.9 Uncertainty  Management 
 

In this class, we will discuss how to deal with uncertainty in engineering design at three 

complementary levels – modeling, analysis, and design. The three levels are illustrated in 

Fig. 1.10. 
 

 
Figure 1.10 Managing Uncertainty in a Design Process 

 

1. Level 1 – Uncertainty modeling 

The task of uncertainty modeling is to quantify uncertainty mathematically. Probability 

theory is commonly used for this task. An uncertain quantity is described by a random 

variable and is characterized by a probability distribution. Since the distribution is usually 

obtained from statistical data, statistics is used to formulate the distribution. The 

mathematical structures of uncertain variables at uncertainty modeling level then provide 

the input to uncertainty analysis at the next level. 
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2. Level 2 – Uncertainty analysis 

The task of uncertainty analysis is to quantify the uncertainty of design performance 

(model output) given the uncertainty of model input. The uncertainty of model input is 

modeled at the above modeling level. Uncertainty analysis helps engineers understand 

how uncertainty impacts design performance and provide them with tools to evaluate 

important design characteristics, such as reliability and robustness. The knowledge from 

uncertainty analysis will then be used at the next design level for managing and 

mitigating the effects of uncertainty. 

 

3. Level 3 – Design under uncertainty 

The task of design under uncertainty is to mitigate the effects of uncertainty by making 

appropriate decisions. Depending on design needs, the focus may be on the reliability 

(safety), robustness, or quality. To make the design cost-effective, the common practice is 

to determine optimal design variables at the design stage without eliminating the causes 

of uncertainty. The reason is that in many cases, eliminating uncertainty causes is very 

expensive. It requires high precision manufacturing and strict quality control. As 

indicated in Fig. 1.10, design under uncertainty is an iterative process. During this 

process, the design is continually updated until satisfactory design is achieved. 

Uncertainty analysis is performed for each updated design. Therefore, the design process 

repeatedly calls uncertainty analysis. 

 

 

1.10 Concluding Remarks 
 

We have reviewed the general engineering design process and introduced important 

concepts of uncertainty. In this class, we will primarily use probability theory to model 

aleatory uncertainty in probabilistic engineering design. The methods of probabilistic 

engineering design introduced in this class can be used in stages of conceptual design, 

preliminary deign, and detail design. In the following chapters, we will first present the 

basic probability theory from an engineering perspective, for readers who may or may not 

be familiar with probability theory. Then we will discuss the basic probabilistic analysis 

and design methods that are commonly practiced in industry. Equipped with the basic 

tools provided in this class, students will have a basic working knowledge for uncertainty 

analysis and design under uncertainty. 

 

 

Reference 
 

[1] ABET, 2000. Criteria for Accrediting Engineering Programs. New York: 

Accreditation Board for Engineering and Technology, Inc. 

[2] Dym, C.L., and Little P., 2004, Engineering Design, A Project-Based 

Introduction, 2nd Edition, John Wiley & Sons, Inc., U.S.A. 

[3] Eggert, R., Engineering Design, 2005, Pearson Prentice Hall, Upper Saddle   

River,   New Jersey. 



14      Probabilistic Engineering Design 

 14 

[4] Ertas, A., and Jones, J., 1996, The Engineering Design Process, John Wiley & 

Sons, Inc., U.S.A. 

[5] Bayarri, M.J. Berger, J.O.,  Higdon, D.,  Kennedy, M.C., Kottas, A., Paulo, R., 

Sacks, J., Cafeo, J.A., Cavendish, J, Lin, C.H., and Tu J., 2000, “A Framework for 

Validation of Computer Models,” Foundations for Verification and Validation in 

the 21st Century Workshop, John Hopkins University/Applied Physics 

Laboratory, Laurel, Maryland. 

[6] Gu, L. and Yang, R. J., 2003, “Computer Model Validation in Vehicle Crash 

Safety Design,” Proceedings of ASME 2003 Design Engineering Technical 

Conferences and the Computers and Information in Engineering Conference, 

Chicago, Illinois, September 1-4, 2003. 

[7] Du, X., 2006, “A Unified Uncertainty Analysis Framework by Probability and 

Evidence Theories,” 2006 ASME DETC Conferences, September 10-13, 2006, 

Philadelphia, Pennsylvania. 

[8] Cafeo, J.A., Donndelinger, J.A., Lust, R.V., and Mourelatos, Z.P., 2005, “The 

Need for Nondeterministic Approaches in Automotive Design: A Business 

Perspective,” in Engineering Design Reliability Handbook, edited by Nilolaidis, 

E., Chiocel, D.M., and Singhal, S., CRC Press, Washington D.C. 


