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Chapter 10 

Introduction to Optimization Design 
 
10.1 Introduction 
 

In the previous chapters, we discussed how to model uncertainty by probability theory. 
We also introduced commonly used uncertainty analysis techniques for quantifying the 
impact of the uncertainty of model input on the model output (performance). Our ultimate 
goal is to use the knowledge we have gained from uncertainty analysis to manage and 
mitigate the effects of uncertainty at the design level. Therefore, we can ensure that a 
design be robust and safe against various uncertainties. The commonly used probabilistic 
design methodologies include reliability-based design, robust design, and Design for Six 
Sigma. Since all of these methods need to use optimization during the design process, a 
brief introduction to optimization design will be given in this chapter. We will then 
discuss reliability-based design and robust design in Chapters 11 and 12 respectively.  
 
Instead of providing a comprehensive presentation of optimization design techniques, this 
chapter is intended to present introductory materials about optimization design. It will 
ensure a reader acquire basic working knowledge that is necessary for optimization 
modeling, the use of optimization software, and the analysis of optimization results. To 
help one easily understand the optimization techniques, a graphical means is employed in 
some cases instead of providing mathematical details. After finishing this chapter and 
associated homework, one is expected to be able to formulate an engineering 
optimization problem and solve it with optimization software.  
 
 

10.2 Optimization Design 
 

Optimization is a design tool that assists designers automatically to identify the optimal 
design from a number of possible options, or even from an infinite set of options. 
Optimization design is increasingly applied in industry since it provides engineers a 
cheap and flexible means to identify optimal designs before physical deployment. 
Optimization capabilities have also been increasingly integrated with CAD/CAM/CAE 
software such as Adams, Nastran, and OptiStruct.  
 
Even in our daily life, we are constantly optimizing our goals (objectives) within the limit 
of our resources. For example, we may minimize our expenditure or maximize our saving 
while maintaining a certain living level. When shopping for a car, we may try to meet our 
preference (performance of the car, safety, fuel economy, etc.) maximally on the 
condition that the price does not exceed what we can afford. It is the same case in 
engineering design where we optimize performances of the product while meet all the 
design requirements. 
 
The general process of optimization design is given in Fig. 10.1. 
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Figure 10.1 The Process of Optimization Design 

The first step of optimization design is to create an optimization model in mathematical 
formulations. This step is called optimization modeling. In this step, several decisions are 
to be made, such as what will be optimized, what design variables will be changed to 
produce an optimal design, and what requirements should be met. Modeling is the most 
important step in optimization design, and designers may spend a significant portion of 
time on modeling during the optimization process. 
 
The second step is solving the optimization model. Three methods are usually used, 
including analytical method, graphical method, and numerical method. Methods of 
solving optimization problems will be discussed in Section 10.5.  
 
The last step is the posterior analysis. In this step, designers perform some analyses on 
the optimal solution. The following questions will be answered. 
 
• Is the design optimal? 
• Is the design feasible? 
• Is the design reasonable? 
• What design variables are most important to the design performances? 
• How would the further improvement be made by modifying the optimization model? 

 

Create optimization design model 
• Design variables 
• Design objectives 
• Design constraints  

Solve the optimization problem 
• Analytical method 
• Graphical method 
• Numerical method 

Analyze optimization results  
• Optimality 
• Feasibility 
• Sensitivity 
• Improvement 
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As shown in Fig. 10.1, the optimization process is iterative. If the design solution is not 
satisfactory, designers will modify the optimization model and repeat the procedure until 
a satisfactory design is found. 
 
 

10.3 Optimization Modeling 
 

We will first present a general mathematical optimization model and then discuss the 
individual components of the optimization model. 
 
Optimization model 

A standard optimization model is given by 
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where 1 2( ,  ,  ,  )nd d d=d L  is the vector of design variables that is to be determined 
during the design;  1 2( ,  ,  ,  )nf d d dL  is a design objective function that is to be 
minimized; 1 2( ,  ,  ,  )i ng d d dL  is an inequality constraint function; 1 2( ,  ,  ,  )j nh d d dL is 

an equality constraint; l
kd  and u

kd   are lower bound and upper bound of design variable 

kd , respectively.  
 
The above model can be interpreted as follows: find an optimal set of design variables 

1 2( ,  ,  ,  )nd d d=d L over the range  ( 1,2, , )l u
k k kd d d k n≤ ≤ = L  that minimizes the design 

objective function 1 2( ,  ,  ,  )nf d d dL  while satisfies the design constraints 

1 2( ,  ,  ,  ) 0i ng d d d ≤L  and 1 2( ,  ,  ,  ) 0j nh d d d =L . It is noted that there are three basic 
components in an optimization problem – design variables, design objective, and design 
constraint. We will discuss each of them below in more depth.  

 

Design Variables 

A design variable is also called a decision variable or control variable. A design variable 
is under the control of a decision maker (designer) and could have an impact on the 
solution of the optimization problem. Essentially, a design is determined by a set of 
design variables. Different combinations of design variables represent different designs. 
For example, if we design a cubic vessel, the vessel can be represented by a set of design 
variables, length l, width w, height h, and thickness t (see Fig. 10.2). The design variables 
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will therefore consist of ( ,  ,  ,  )l w h l=d . Design 1 by ( )1 100 , 30cm, 40cm, 1cmcm=d  is 

considerably different from Design 2 by ( )2 500 , 100cm, 160cm, 2cmcm=d  since they 
have different attributes or performances (volume, cost, strength, etc). 
 

 
Fig. 10.2 A Cubic Vessel 

 
The goal of the design optimization is to find the best combination of design variables 
that optimizes designer’s preference (design objective) and maintains certain 
requirements (constraints). For example, for the aforementioned vessel design, we may 
want to find an optimal set of design variables, length l, width w, high h, and thickness t, 
to minimize the material consumption (or equivalently, the surface area). 
 
A design variable can be in the following forms. 
 

• A continuous variable. In the above vessel design problem, the dimensional 
design variables are continuous design variables.  

• An integer. The number of the teeth of a gear and the type of materials (type 1, 
type 2, and so on) are examples of the integer design variables. 

• A discrete variable. The variable can take values from only a discrete real set. For 
example, when designing a standard component, designers are required to choose 
the design variables from a list of recommended values from design standards or 
design codes. 

 

Design Objective 

A design objective represents the desires of the decision makers (designers), for example, 
to maximize profit or minimize cost. In other words, the design objective can be 
considered as a criterion to compare whether or not a given design is better than others. 
In optimization design, a design objective is represented by a mathematical function in 
term of design variables, and such a function is called objective function, which is given 

l 

h 

w 

t 
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by ( )f d  in Eq. 10.1. Certain design variable combination determines the optimal value 
of the objective function.   
 
Choosing an appropriate design objective is important; different design objectives may 
lead to totally different design results. Examples of design objective include 
 

• Maximizing yield (productivity), strength, robustness, reliability, durability, or 
safety. 

• Minimizing cost, weight, volume, manufacturing time, or probability of failure. 
 

The objective function in the standard optimization model in Eq. 10.1 is to be minimized. 
If a designer wishes to maximize a objective function ( )f d , the problem of 
Maximize ( )f d  can be easily converted to the standard minimization problem in Eq. 10, 
because Maximize ( )f d  is equivalent to Minimize ( )f− d . 
 
Design Constraint 

Designer’s desires (for example, increasing the profit) cannot be optimized infinitely 
since there are limited resources that can be used in product development. The limited 
resources and other restrictions imposed by government and corporate regulations have to 
be met strictly. These requirements are expressed by constraint functions in optimization 
design. A constraint function is also expressed in a mathematical form in terms of design 
variables. As shown in the optimization model in Eq. 10.1, a constraint function can be 
an inequality constraint 1 2( ,  ,  ,  ) 0i ng d d d ≤L  or an equality constraint 

1 2( ,  ,  ,  ) 0j nh d d d =L .  
 
Examples of design constraints include the following.  
 

• The maximum stress should be less than the strength. 
• The maximum deflection should be less than an allowable value. 
• The probability of failure should be below an acceptable level.  
• The cost should not exceed the budget.  

 
Compared to a design objective, a design constraint is “rigid” since it must be satisfied 
strictly. The former is more “flexible” since we want it as small (or large) as permitted by 
the design constraints. 
 
In sum, when creating an optimization model, three components must be included: design 
variables, a design objective, and design constraints.  

 

Example 10.1: Optimization modeling 

A company plans to manufacture a product. The total of $5000 funding is available to 
purchase labor and material. The unit prices of labor and material are $10 and $20, 
respectively. If d1 units of labor and d2 units of material are pursed, the company will 
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produce d1d2 units of the product. Formulate a mathematical model that maximizes the 
quantity of the product that the company can manufacture. 
 
Since the units of the labor and material are to be determined, the design variables are 
taken as ( )1 2,  d d=d .  The objective is to maximize the quantity of the product, which is 

given be 1 2d d . Therefore, the objective function is formulated by 1 2( )f d d=d . d1 and d2 
should satisfy the budget constraint, and this results in the constraint function 

1 2( ) 10 20 5000g d d= + ≤d . The optimization model is then given by 
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To express the optimization problem in the standard model in Eq. 10.1, we can minimize 
a new objective 1 2 ( )f d d= −d , which is equivalent to maximizing 1 2d d . Then the 
optimization model in a standard form is given by 
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10.4 Basic Terminologies 
 

Before discussing how to solve an optimization problem specified in Eq. 10.1, we will 
use the above example to explain the basic terminologies of design optimization. When 
studying the following definitions, please refer to Fig. 10.3, which illustrates the concepts 
graphically with the above example. 
 
Design space: The design space is the domain defined by the design variables. In the 
example, the design space is a two-dimensional real set ( )1 2,  d d=d . 
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Design point: Any point in the design space is a design point. A design point represents a 
design option. When n design variables are involved, a design point is an n-dimensional 
vector. In the above example, a design point is expressed by ( )1 2,  d d=d . 
 

 
Figure 10.3 Basic Terminologies 

 
Feasible design (point): A feasible design (point) represents a design that satisfies all the 
design constraints. In others words, if a design point 1 2( ,  ,  ,  )nd d d=d L  meet all the 
constraints in Eq. 10.1, ( ) 0 ( 1,2, , )i ig i n≤ =d L , ( ) 0 ( 1,2, , )j eh j n= =d L , and 

 ( 1,2, , )l u
k k kd d d k n≤ ≤ = L , then the design specified by 1 2( ,  ,  ,  )nd d d=d L  is feasible. 

 
Infeasible design (point): An infeasible design (point) represents a design that violates at 
least one design constraint.  
 
Constraint boundary: A constraint boundary is a domain of design variables, where the 
corresponding constraint function reaches its limit. For example, for the constraint 
function 1 2( ) 10 20 5000 0g d d= + − ≤d , its boundary is 1 2( ) 10 20 5000 0g d d= + − =d . 
 
Feasible region: The feasible region is the domain composed of feasible design points. 
All the constraints are satisfied in the feasible region.  
 
Infeasible region: The infeasible region is the domain composed of all the infeasible 
design points. It is noted that the design space is divided into feasible and infeasible 
regions by all the constraint boundaries. 
 
Active constraint: If a constraint reaches its limit at a design point, then the constraint is 
said to be active at that design point. For example, if at some design point, 
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1 2( ) 10 20 5000 0g d d= + − =d , then the constraint 1 2( ) 10 20 5000 0g d d= + − ≤d  is 
active at that design point.  
 

 

10.5 Solve Optimization Problems 
 
There are many ways to solve an optimization problem. We will discuss analytical, 
graphical, and numerical methods in the following subsections.  
 

Analytical method  

If a design 1 2( ,  ,  ,  )nd d d=d L  is an optimal point, then the following conditions (Kuhn-
Tucker conditions) hold, 
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where ∇  stands for the gradient vector and is given by 
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n

f f ff
d d d

 ∂ ∂ ∂∇ =  ∂ ∂ ∂ 
d L  (10.5) 

 

 
1 2

( ) ,  ,  , 
T

n

g g gg
d d d

 ∂ ∂ ∂∇ =  ∂ ∂ ∂ 
d L   (10.6) 

 
and 

 
1 2
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T

n

h h hh
d d d
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iw  and iv  in Eq. 10.4 are undetermined constants. 
 
Alternatively, we can use the following equivalent conditions without the notation of 
gradient. 
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We can obtain the optimal solution by solving Eqs. 10.4 or 10.8. To solve the equations, 
we need to calculate the derivatives of the objective and constraint functions. The 
simultaneous equations in Eqs. 10.4 or 10.8 are usually nonlinear. Because of the 
complexities, the analytical method is used only if the problem is very simple. 
 

Example 10.2: Using the analytical method to solve Example 10.1 
  
The standard optimization model in Eq. 10.3 will be used to solve the problem. There is 
one inequality constraint, and there is no equality constraint.  
 
The derivatives of the objective and constraint function are calculated by 
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Using Kuhn-Tucker condition 
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From ( ) 0i iw g∇ =d , we have 
 
                                                         ( )1 1 210 20 5000 0w d d+ − =                                (10.11) 
 
 
Solving Eqs. 10.9 through 10.11 yields 1 250d = , 2 125d =  and 1 12.5w = . Therefore the 
optimal solution is 1 250d = , 2 125d = , 1 2( ) 31250f d d= − = −d , and  

1 2( ) 10 20 5000 0g d d= + − =d . The solution indicates that if the company purchases 250 
units of labor and 125 units of material, it will produce a maximum number of units 
(31250) of the product with the condition that the cost is equal to $5000. 
 

 

Graphical Method 

 
If the optimization problem is relatively simple, for example, there are only one deign 
variable or two design variables, all the objective and constraint functions can be 
visualized with a 1-D or 2-D plot. One may easily identify the optimal point from the 
graph. 
 
The procedure of solving an optimization problem graphically is as follows. 
 

• Plot constraint boundaries and identify the feasible design region.  
• Plot the contours of objective function and identify the direction along which the 

objective function increases or decreases. 
• Identify the location of the optimal point. Usually, the optimal point is located on 

one or more constraint boundaries. In other words, the optimal point is usually a 
tangent point between a contour of the objective function and some constraint 
boundaries. 

• Solve the tangent point if needed. 
 
Let us use Example 10.1 again to demonstrate how to solve an optimization problem 
graphically. 
 
Example 10.3: Solve Example 10.1 graphically 
 
The constraint boundaries of 1 2( ) 10 20 5000 0g d d= + − ≤d , 1 0d =  and 2 0d = , and 
contours of objective function  1 2( ) 31250,20000,12800,5000f d d= =d  are plotted in 
Fig. 10.4. The contours of the objective function indicate that the objective function 
increases when both design variables increase. Therefore, moving the design point to the 
direction pointing toward upper-right will produce higher objective function values. 
Considering that a design point must remain within feasible region, we see that the 
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optimal point is the tangent point of constraint boundary 1 2( ) 10 20 5000 0g d d= + − =d  
and one of the objective function contours. 
 

 
Figure 10.4 Graphic Method 

 
 

In this case, it may not be easy to obtain the tangent point by just simply looking at the 
plot. To find the tangent point, we solve following simultaneous equations. 
 

1 2( ) 10 20 5000 0g d d= + − =d , 
and 

1 2( ) cf d d= =d ,  
 
where c is a constant.  
 
Eliminating variable 2d  from the two equations, we obtain 
 

2
1 1500 2 0d d c− + = . 

 
The roots of the above equation are 
 

( )1 500 250000 8 / 2d c= ± − . 

 
Since a unique solution exists (recall that we are looking for a tangent point), we have 
 

250000 8 0c− =  , 
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which results in 31250c =  and 1 250d = . The equation 

1 2( ) 10 20 5000 0g d d= + − =d then results in 2 125d = . The solution is identical to the one 
obtained from analytical method in Example 10.2. 
 
 
Numerical Method 

Most engineering design optimization problems cannot be solved by analytical or 
graphical methods since a large number of design variables are involved and objective 
and constraint functions are very complicated. For example, in vehicle engine design, 
there are hundreds of design variables and constraints. The only practical way to solve 
complex optimization problems is using numerical methods. Next, we will introduce the 
commonly used numerical methods which are based on the gradient of objective and 
constraint functions. 
 
With a numerical method, the optimal design starts from an initial design point (starting 
point) that represents an initial design. The numerical optimizer evaluates the objective 
function and constraint functions and their derivatives. Based on the function values and 
the derivatives, the optimizer generates a search direction along which the objective 
function will likely to descend. A step size along the descent direction will be searched 
such that the objective function will decrease to the lowest possible value without 
violating any constraints. Then, at the next iteration, the current design point moves along 
the search direction with the specified step size. A new design point is then obtained.  
 
The optimizer evaluates the objective function and constraint functions again at the new 
design point and checks whether the solution converges. If the convergence is not 
reached, the optimizer generates a new search direction and the step size for the next 
iteration. This procedure repeats until optimal solution is found.  
 
Let the current design point be kd , where k is the iteration counter. The search direction 

ka  (an n dimensional vector) and the step size along the direction kβ  (a scalar) are 
generated. Then, a new design point 1k +d  is given by 
 
 1k k k kβ+ = +d d a . (10.12) 
 
Eq. 10.12 is graphically illustrated in Fig. 10.5 for a two-dimensional problem.  
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Figure 10.5 Optimization Search 
 

The search process termi nates if the convergence has been researched. Some commonly 
used stopping criteria are listed below, where ε is small positive number. 
 
1) The distance between two consecutive points is small. 
 

1
1

k k ε+ − ≤d d , 
 
where   ⋅  stands for a distance. Or,  
 

1
1  ( 1, 2, , )k k

i id d i nε+ − ≤ = L . 
 
2) The difference between the objective functions at two consecutive points is small. 
 

1
1( ) ( )k kf f ε+ − ≤d d . 

 
Other criteria such as Kuhn-Tucker conditions may be also used. 
 
Most of the optimization algorithms use the above strategy to search the optimal point. 
Different optimization algorithms use different approaches to generate the search 
direction and step size. This is the reason there exist dozens of popular optimization 
algorithms. Since the derivatives are evaluated at each design point, the methods are also 
termed as gradient-based methods. In addition to providing the objective and constraint 
functions, a user can also provide the functions (equations) of derivatives of the objective 
and constraint functions. If the analytical derivatives are not provided, the optimizer will 
evaluate the derivatives numerically. The optimization process can be fully automatic 
when optimization software is used. The general flowchart of the gradient based methods 
is given in Fig. 10.6. 

d1 

d2 

dk 

dk+1 

αk 

β k 

New design 
Current design 
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Figure 10.6 Flowchart of Gradient-Based Optimization Methods 
 
 
It is worthwhile noting that the optimal solution may depend on where the optimization 
search process starts when multiple local optimal points exist. As shown in Fig. 10.7, *

1d , 
*
2d  and *

3d  are three optimal points where the objective function reaches the minimum 
values locally. *

3d  is the global optimal point since the objective function has the 
minimum values in the entire design space. If the optimization starts from different 
stating points, 0

1d , 0
2d  and 0

3d , the search process will end up with the optimal points *
1d , 

*
2d  and *

3d , respectively.  Therefore, to obtain a global optimal solution, different starting 
points may be used. Another strategy is to use so-called global optimization algorithms, 
which have more chance to find the global optimal solution than non-global optimization 
ones. 
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Figure 10.7 Optimal Point and Starting Points 
 

The discussions on how to use two optimization tools, Microsoft Excel and Matlab 
Optimization Toolbox, are given in the appendices. 
 
 

Appendix 10.1  Optimization by Excel 
 
The optimizer in Excel is called Solver and is located on the Tools pull-down menu from 
the main menu bar (see Fig. 10.A.1).  
 

 
Figure 10.A.1 Solver in Excel 

 
If you do not see the Solver, please do the followings. Click on “Tools” on the menu bar 
and choose Add-Ins (see Fig. 10.A.1), then a dialog window comes up as shown in Fig. 
10.A.2 and check “Solver Add-in” box. Exit the window by pressing “OK”. 
 

d 

f(d) 

*
1d  

New design 

*
2d  *

3d  

0
1d  0

2d  
0
3d  
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Figure 10.A.2 Add-Ins Window 

 
Next let us see how to set up an optimization problem in Excel. 
 
After clicking on “Solver” from “Tools” from Excel main menu bar, you will see the 
following setup window (Fig. 10.A.3) and use it to set up an optimization model. Let us 
examine each part of the dialog box one by one. 
 

 
Figure 10.A.3 Solver parameters 

 
Set Target Cell is where you indicate the objective function that is to be optimized. This 
cell must contain a formula that depends on design variables (defined in other cells in the 
line of “By changing cell”).  
 
Equal to gives you the option of defining either a maximization problem (use Max) or a 
minimization problem (use Min). We will not use “value of”. “By Changing Cells” is 
where you indicate which cells contain the design variables. You must fill in each cell 
with a value. These values represent the starting point for the optimization.  
 
Guess guesses all nonformula cells referred to by the formula in the Set Target Cell box, 
and places their references in the “By Changing Cells” box. 
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Subject to the Constraints is used to impose constraints on the design variables. Under 
the heading of “Subject to the Constraints”, you have options to add, change, or delete 
constraints. After you choose “Add”, a dialog box will appear as follows (Fig. 10.A.4). 
You put a constraint function under “Cell Reference” and the limit under “Constraint” 
and choose the relationship between them by checking one from “<=”, “>=”, or “=”. 
 

 
Figure 10.A.4 Add constraints 

 
Options displays the Solver Options dialog box, where you can load and save problem 
models and control advanced features of the solution process. We will use default values 
and will not change them.   
 
Reset All clears the current problem settings, and resets all settings to their original 
values. 
 
After you finish above settings, click on “Solve” and you will see a new window popping 
up as shown in Fig. 10.A.5. If you choose “Keep Solver Solution”, the initial design point 
will be replaced by the optimal point in the adjustable cells. If choose “Restore Original 
Values”, the initial design point will be remain in the adjustable cells (the cells for design 
variables). For “Reports’, please use “Answer” which will generate a report with the 
target cell (objective) and the adjustable cells (design variables) with their original and 
final values, constraints, and information about the constraints. 
 

 
Figure 10.A.5 Set Up How the Results to Be Reported 

 
 
Example 10.4: Solve Example 10.1 using Excel 
 
The problem setting for the problem is shown in Fig. 10.A.6 and the report of optimal 
solution is shown in Fig. 10.A.7.  The same result is obtained as in Examples 10.2 and 
10.3. 
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Figure 10.A.6 Set up the optimization problem 

 

 
 

Figure 10.A.7 Optimal Solution Report 
 

=C10 =C11 =10*C10+5*C11 

=C10*C11 
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Appendix 10.2  Optimization by Matlab Optimization Toolbox 
 
MATLAB Optimization toolbox provides functions that perform optimization on the 
various types of problems. We can use either fmincon or constr functions to solve an 
optimization problem.  Since constr no longer exists in the latest version of Matlab, we 
will only introduce fmincon. 

 
MATLAB optimization mainly consists of three MATLAB files 

• Main function 
• Objective function  
• Constraint function.  

 
Main Function: The purpose of the main function is to initialize the independent 
variables, to set the optimization options, to call the optimizer fmincon function, and to 
plot the results. 
 
The Syntax for the fmincon function is as follows: 

 
d = fmincon(fun,d0,A,b,Aeq,beq,lb,ub,nonlcon,options) minimizes the objective 
function specified by fun.  
 
d0 is the initial value for the design variable. The design is subjected to linear inequality 
constraints such that A*d<=b, linear equality constraints such that Aeq*d=beq, and 
nonlinear inequality constraints c(x) and equality constraints ceq(d) such that c(d)<=0 
and ceq(d)=0. Both inequality constraints c(d) and equality constraints  ceq(d) are 
defined in function nonlcon. lb and ub are upper and lower bounds for the design 
variables d.  Different from the standard formulation given in Eq. 10.1, the Matlab 
Optimization distinguishes nonlinear constraints from linear constraints, and the 
optimization model is then given by 
 

 

minimize ( )

subject to
                                        Inequality linear constraint

                                    Equality linear constraint     
     ( ) 0,  1, 2, ,      i i

f

c i n

⋅ ≤

⋅ =
≤ =

d
d

A d 0

A eqd 0
d L         Inequality nonlinear constraint

     ( ) 0,  1,2, ,         Equality nonlinear constraint

     ,  1,2, ,
j e

k k k

ceq j n

lb d ub k n










= =
 ≤ ≤ =

d L
L

 (10.13) 

 
Example 10.5 Use Matlab to solve the cantilever beam design 
 
A cantilever beam to be designed is illustrated in Fig. 10.A.8.  
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Figure 10.A.8 A Cantilever Beam 

The objective of the problem is to minimize the weight or equivalently the cross-sectional 
area 
 
 ( )f bh=d ,  
  
where b and b are width and height of the cross section, respectively, and the design 
variables are ( ),  b h=d . 
 
Two constraints are considered. The first constraint is that the maximum stress at the 
fixed end of the cantilever beam is less than the yield strength 35000S psi= . 
 

   1

6
( ) ( ) 0

L X Y
g S

bh b h
= + − ≤d ,  

  
where 500X lb=  and 1000Y lb=  are external forces; ''100L =  is the length of the beam. 
  
The second constraint is that the tip displacement does not exceed an allowable value D0, 
 

   
2 23

2 03 3

4
( ) 0

L X Y
g D

E b h bh
  = + − ≤   

  
d ,   

 
where ''

0 2.5D = and 29 6E e psi=  is the material modulus of elasticity.   
 
The bounds for the design variables are 1 10b≤ ≤  and 1 20h≤ ≤ , respectively. 
 
The optimization model is then given by 
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( , )

1

2 23

2 03 3

minimize ( )

subject to
6

     ( ) ( ) 0

4     ( ) 0

     1 10
     1 20.

b h
f

L X Y
g S

bh b h

L X Yg D
E b h bh

b
h

=




 = + − ≤


   = + − ≤      
 ≤ ≤
 ≤ ≤

d
d

d

d

 (10.17) 

 
 
The starting point is set to ( ), (2, 2)b h= =d  and the results from Matlab are 
 
The optimal point = 2.0465      4.0931 
The objective function = 8.3766 
The constraint functions = -6.0856e-008     -0.3022 
 
The optimal point is ( ), (2.0465, 4.0931)b h= =d , the objective function is 

( ) 8.3766f =d , the constraint functions are 1( ) -6.0856e-8g =d , and 2( ) -0.3022g =d . 
Since 1( )g d  is very close zero, it is an active constraint at the optimal. 
 
 
The Matlab source codes are given below. 
 
 
Main function 
%Example 10.4 in ME301 
d0=[2,2]; %starting point, t=h=2; 
lb=[1,1]; %lower bounds for design variables; 
ub=[10,20]; %upper bounds for design variables; 
option=optimset('display','iter'); %set options to show the optimization history  
d=fmincon('obj_fun',d0,[],[],[],[],lb,ub,'constr_fun',option); %call the optimizer 
%Analysis at the optimal point 
t=d(1); 
h=d(2); 
obj=t*h; 
c=constr_fun(d); %calculate the constraint functions 
disp(['The optimal point = ',num2str(d)]); 
disp(['The objective function = ',num2str(obj)]); 
dis p(['The constraint functions = ',num2str(c)]); 
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Objective function 
function obj=obj_fun(d) 
%Objective function 
b=d(1); 
h=d(2); 
obj=b*h; 
 
Constraint function 
function [c,ceq]=constr_fun(d) 
%Constraint function 
b=d(1); 
h=d(2); 
X=500; 
Y=1000; 
E=29E6; 
D0=2.5; 
L=100; 
S=35000; 
c(1)=6*L/b/h*(X/b+Y/h)-S;%1st constraint 
c(2)=4*L^3/E*((X/b^3/h)^2+(Y/b/h^3)^2)^0.5-D0;%2nd constraint 
ceq=[]; %no equality constraint 


