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Chapter Three 

Random Variables and Probability Distributions 
 
3.1 Introduction 
 

An event is defined as the possible outcome of an experiment. In engineering 
applications, the outcomes are usually associated with quantitative measures, such as the 
time-to-failure of a product, or qualitative measures, such as whether a product is safe or 
risky. When considering the continuous quantitative measurements, we use a quantity X, 
which varies in a certainty range, including X−∞ < < ∞ , to denote a random event 
measurement. The variable X is also called a continuous random variable. If X can take 
on only limited values, it is called a discrete random variable. We will discuss only 
continuous random variables herein. 

 
The following symbol convention is used throughout this course. An uppercase letter 
denotes a random variable; a lowercase letter denotes an observation (or a realization) of 
a random variable, or a deterministic variable; and a bold letter denotes a vector. For 
instance, X stands for a random variable; x denotes a realization of X. X stands for a 
vector of random variables, and x stands for a vector of realizations of X or a vector of 
deterministic quantities.    
 
Next, we will introduce how to use a cumulative distribution function or probability 
density function to fully describe a random variable X. 

 
3.2 Cumulative Distribution Function and Probability Density 

Function 
 

For a physical quantity, the possible outcomes are usually within a range of measured or 
observed values. For example, if the nominal value of the length of a shaft is 100 mm, 
and its manufacturing tolerance is 0.1 mm, the actual length will be within the range of 
100 0.1 mm± . When the length is measured, its actual values may vary from 99.90 mm  
to100.10 mm . 100 sample measurements of the length are given in Table 3.1. As shown 
in the table, within the range from 99.90 mm  to100.10 mm , curtain values occur more 
frequently than others. The values around the nominal length 100 mm occur with a higher 
chance than the values near both endpoints.  
 
If we divide the range [99.90, 100.10] into several equal segments and plot the number of 
values of the length that reside the segments, we will have a bar-like graph (see Fig. 3.1). 
This type of graph is called a histogram. It shows the frequency of the values that occur 
in different segments. 
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Table 3.1 100 Measurements of the Beam Length 

 
99.90 99.90 99.93 99.94 99.95 99.95 99.95 99.95 99.95 99.96 
99.96 99.96 99.96 99.96 99.96 99.96 99.96 99.96 99.96 99.97 
99.97 99.97 99.97 99.97 99.97 99.97 99.97 99.97 99.97 99.98 
99.98 99.98 99.98 99.98 99.98 99.98 99.99 99.99 99.99 99.99 
99.99 99.99 99.99 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.01 
100.01 100.01 100.01 100.01 100.01 100.01 100.01 100.01 100.01 100.01 
100.01 100.02 100.02 100.02 100.02 100.02 100.02 100.02 100.02 100.02 
100.02 100.02 100.03 100.03 100.03 100.03 100.03 100.03 100.03 100.04 
100.04 100.04 100.04 100.04 100.04 100.05 100.05 100.05 100.06 100.08 

 
From the histogram, we see that it is more likely that the values of the length are around 
the nominal value 100 mm. 

 
 

Figure 3.1 Histogram of the Length 
 

If we plot the number of samples (measurements) divided by the total number of 
measurements, we obtain a variant of the histogram. As shown in Fig. 3.2, the vertical 
axis represents the number of measurements within each segment divided by the total 
number of measurements (100). Obviously, Fig. 3.2 is a scaled version of Fig. 3.1.  
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Figure 3.2 Histogram of the Length 

 
If we have more samples and use more intervals to divide the range of the length, the bars 
in Fig. 3.2 will approach a smooth curve as shown in Fig. 3.3. This curve is called a 
probability density function (pdf).  

 
Figure 3.3 Histogram of the Length with More Samples 
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The pdf captures the chance property of a random variable as shown in Fig. 3.4 and fully 
describes a random variable. ( )f x  is used the denote a probability density function of  
random variable X, where x is a realization (a specific value) of X. The significance of 
the pdf is that ( )f x dx  is the probability that the random variable X is in the 
interval[ , ]x x dx+  (see Fig. 3.4), written as  
 

 P( ) ( )x X x dx f x dx≤ ≤ + =  (3.1) 
 

 
Figure 3.4 Probability Density Function 

 
We can also determine the probability of X over a finite interval [ , ]a b  as 

 

  P( ) ( )
b

a
a X b f x dx≤ ≤ = ∫  (3.2) 

 

which is the area underneath the curve of ( )f x from x a=  to x b=  (see Fig. 3.4).  

 
A pdf must be nonnegative, i.e.  
 

  ( ) 0f x ≥  (3.3) 
 

and satisfies the following condition 
 

  ( ) 1f x dx
+∞

−∞
=∫  (3.4) 

x 
dx 

a  

( )f x

P( ) ( )x X x dx f x dx≤ ≤ + =

P( ) ( )
b

a
a X b f x dx≤ ≤ = ∫

b 
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Eq. 3.4 indicates that the area underneath the pdf curve is 1. In other words, the 
probability of X taking all possible values is equal to 1.0. 
 
In addition to pdf, the cumulative distribution function (cdf) is also commonly used. It is 
defined as the probability that the random variable X is less than or equal to a constant x, 
namely, 
  

  ( ) ( ) ( )
x

F x P X x f x dx
−∞

= ≤ = ∫  (3.5) 

 

As shown in Fig. 3.5, the cdf ( )F x  is the area underneath the pdf curve in the range of 
( ,  ]x−∞ . 

 

 
 

Figure 3.5 Probability Density Function 
 

Note that since ( ) 0f x ≥  and the integral of ( )f x is normalized to unity, ( )XF x possesses 
the following features:  

• ( )F x is a nondecreasing function of x and ( ) 0XF x ≥  
• ( ) 0F −∞ =  
• ( ) 1F +∞ =  

Fig. 3.6 shows the cdf which corresponds to the pdf depicted in Fig. 3.4. 

( )f x

xx

( ) ( ) ( )
x

F x P X x f x dx
−∞

= ≤ = ∫
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Figure 3.6 Cumulative Probability Function 

Eq. 3.5 gives the mathematical relationship between the pdf and cdf. Conversely, the pdf 
can be derived from the cdf with the following equation 

  
[ ( )]

( )
d F x

f x
dx

=  (3.6) 

 

3.3 Population and Sample 

The distribution we discussed above is referred to as population distribution. By 
definition, a population is any entire collection of objects from which we may collect 
data. It is the entire group in which we are interested, and about which we wish to 
describe or draw conclusions. If we use the concept of the set discussed in Section 2.3, 
the population can be viewed as a universal set. We use the pdf and cdf given above to 
describe a population distribution.  

Because a population is too large to study in its entirety, usually a group of units selected 
from the population is used to draw conclusions about the population, such as the 
distribution shape and location. This group of units selected from the population is called 
a sample of that population. The sample should be representative of the general 
population. This is often best achieved by random sampling.  

For example, to understand the population of the length of the aforementioned shaft, 100 
samples were collected randomly as shown in Table 3.1. These samples can be used to 
study the population of the length by using statistical tools such as the histogram drawn 
in Fig. 3.1. 

 

x 

1.0 

( )F x

XM 
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3.4 Moments 
 

Even though a cdf or pdf can fully describe a random variable X, neither of them may be 
straightforward enough for a direct interpretation. For convenience, we frequently use 
other additional parameters which can be derived from the cdf or pdf. The most important 
parameters are the moments, including 

• mean, which is the first moment about the origin 
• variance, which is the second moment about the mean 
• skewness, which is the third moment about the mean 

The k-th moment about the origin is given by 

  ' ( )k
k XM x f x dx

+∞

−∞
= ∫  (3.7) 

 
The k-th moment about the mean Xµ  is given by 

  ( ) ( )k
k X XM x f xµ

+∞

−∞
= −∫  (3.8) 

  
 The mean Xµ  is defined below. 
 
 
3.4.1 Mean 
 

The mean value, also known as the expected value, or population mean, is defined as the 
first moment measured about the origin 
 

  ( )X Xxf x dxµ
+∞

−∞
= ∫  (3.9) 

 

If there are n observations (samples) of the random variable X, 1 1( , , , )nx x xL , the average 
of the samples (sample mean) is calculated by 
 

   
1

1 n

i
i

X x
n =

= ∑  (3.10) 

 

As the sample size n increases, the sample mean X  will approach the population mean 
(the expected value) Xµ . Therefore, the expected value Xµ  is the long-run average of 
random variable X. We can use a sample mean to estimate a population mean.  
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The 100 samples of the shaft length in Table 3.1 were drawn from a population with its 
mean 100 mmXµ = . The sample mean of the length is calculated by 

 

  
100

1

1
99.96

100 i
i

X x
=

= =∑  (3.11) 

 
In this case, it is seen that the sample mean is close to the population mean. 

 
3.4.2 Variance 
 

The variance is the second moment about the mean. It is an indication of how the 
individual measurements scatter around its mean. The population variance is defined as 

 

  2 2( ) ( )X Xx f x dxσ µ
+∞

−∞
= −∫  (3.12) 

 
When n observations ( )1 1, , , nx x xL  are available, the sample variance can be calculated 
by 
 

  2 2

1

1
( )

n

i
i

S x X
n =

= −∑  (3.13) 

 
The value of the variance given by the above equation is biased. When the number of 
samples n approaches infinity, the estimate will not converge to the population variance 

2σ . The unbiased sample variance is then used and is given by 
 

  2 2

1

1
( )

1

n

i
i

S x X
n =

= −
− ∑  (3.14) 

 
The sample variance in the above equation will approach the population mean when the 
sample size n increases.  
 
The use of a variance as a descriptor is not obvious due to its unit, which is the square of 
the unit of the random variable. It is not the same as the unit of either the random variable 
or its mean. Therefore, the square root of the variance is usually used and is called the 
standard deviation with the following formulation.  
 

  2( ) ( )X Xx f x dxσ µ
+∞

−∞
= −∫  (3.15) 
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Similarly, the sample standard deviation is calculated by 
 

  2

1

1 ( )
1

n

i
i

S x X
n =

= −
− ∑  (3.16) 

 
Using the 100 samples in Table 3.1, we can calculate the sample variable and standard 
deviation of the shaft length. The results are 2 20.0324 mmS =  and 0.18 mmS = . These 
two values can be used as the estimates of the population variance 2σ  and standard 
deviationσ , respectively. 
 
The standard deviation is a measure of how a distribution spreads out; it is used to 
characterize the dispersion among the measures in a given population.  Suppose that two 
shafts have the same mean value of the length 100 X mmµ = . But their standard 
deviations of length are different: 1 0.0034σ =  and 2 0.0068σ = . Since the first shaft has 
a smaller standard deviation, its length is distributed more narrowly than the second shaft 
(see Fig. 3.7). Because of this, with the same other conditions, the variation of the 
performance (such as stress and deflection which are functions of the length) of the first 
shafts will be smaller than that of the second shaft. In this sense, we may say that the first 
shaft has higher quality (or is more robust) than the second shaft. The example shows that 
the standard deviation is an important indicator of quality or robustness. 
 

 
 

Figure 3.7 pdfs of Two Shafts  

α

( )f x

Shaft 1 

Shaft 2 
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3.4.3 Skewness 

 
The skewness is defined as the third moment about the mean with the following equation,  
 

  3
0 ( ) ( )X X Xx f x dxγ µ

+∞

−∞
= −∫  (3.18) 

 
A nondimensional measurement of the skewness known as the skewness coefficient is 
defined as 
 

  0
3
X

X
X

γ
γ

σ
=  (3.19) 

 
The skewness describes the degree of asymmetry of a distribution. A symmetric 
distribution has a skewness of zero, while an asymmetric distribution has a nonzero 
skewness. If more extreme tail of the distribution is to the right of the mean, the skewness 
is positive; if the more extreme tail is to the left of the mean, the skewness is negative. 
The skewness is illustrated in Fig. 3.8. 
 

 
Figure 3.8  Skewness of Distributions 

 
 

Value of random variable, x 

( )Xf x
 

Positives skewness Negative skewness Zero skewness 
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3.4.4 Median 
 

The median of a population mX is the point that divides the distribution of a random 
variable in half. Numerically, half of the measurements in a population will have values 
that are equal to or larger than the median, and the other half will have values that are 
equal to or smaller than the median.  
 
If the cdf of a random variable is given, the median can be found by the fact that at the 
median, the cdf is equal to 0.5, i.e.  
 

  ( ) 0.5X mF X =  (3.20) 

 
The population mean is demonstrated in Fig. 3.6. 
 
To find the median from a set of samples, we need first to arrange all the samples from 
lowest value to highest value and then pick the middle one(s). If there are an even 
number of samples, we take the average of the two middle values.  
 
For example, there are two sets of samples, A = (3.2, 5, 2, 6.5, 7) and B = (3.2, 5, 2, 6.5, 
7, 8). First we sort the samples as A = (2, 3.2, 5, 6.5, 7) and B = (2, 3.5, 5, 6.5, 7, 8). 
Then, we calculate the medians. The median of A is 5 and that of B is (5 + 6.5) /2 = 5.75. 
 
 

3.4.5  Percentile Value 
 

A percentile value X α  is a value below which the probability of the actual values of 
random variable X less than X α  is α , i.e. 
 

  ( ) ( ) ( )
X

XP X X F X f x dx
α

α α α
−∞

≤ = = =∫  (3.21) 

 
The percentile value is illustrated in Fig. 3.9. It is shown that the shaded area under the 
pdf curve is equal to α . 
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Figure 3.9 Percentile Value of a Distribution 

 

3.5  Jointly Distributed Random Variables 
 

When two or more random variables are being considered simultaneously, their joint 
behavior is determined by their joint probability distribution function. We will first 
discuss the situation of two random variables. The discussions can be easily extended to 
the general situation where more than two random variables are involved.  

 
3.5.1 Joint density and distribution functions 
 

The joint cdf of two random variables X and Y is defined as 
 

  , ( , ) ( , )X YF x y P X x Y y= ≤ ≤  (3.22) 

 

The joint cdf obeys following conditions: 
 

• , ( , ) 0X YF −∞ −∞ =                                  (3.23) 

• , ( , ) 0X YF x −∞ =            (3.24) 

• , ( , ) 0X YF y−∞ =           (3.25) 

• , ( , ) 1X YF +∞ +∞ =           (3.26) 

• , ( , ) ( )X Y XF x F x+∞ =           (3.27) 

• , ( , ) ( )X Y YF y F y+∞ =           (3.28) 

• , 0X YF ≥                (3.29) 

• ,X YF  is a non-decreasing function of X and Y. 
 

x

( )
X

f x dx
α

α
−∞

=∫

X α

( )Xf x

α
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The joint pdf is given by 
 

  ,
,

( , )
( , ) X Y

X Y

F x y
f x y

x y
∂

=
∂ ∂

 (3.30) 

 
If the joint pdf is given, the joint cdf can be calculated by 
 

 , ,( , ) ( , ) ( , )
x y

X Y X YF x y P X x Y y f x y dxdy
−∞ −∞

= ≤ ≤ = ∫ ∫  (3.31) 

 
3.5.2 Marginal density function 
 

Knowing the joint pdf, we can obtain the individual pdf, called marginal pdf. 
 

 ,( ) ( , )X X Yf x f x y dy
+∞

−∞
= ∫  (3.32) 

and 

 ,( ) ( , )Y X Yf y f x y dx
+∞

−∞
= ∫  (2.33) 

 
3.5.3 Covariance and correlation 
 

Similar to the variance of a single random variable, the covariance of two random 
variables X and Y, denoted as Cov( , )X Y , is the second moment about their respective 
means Xµ  and Yµ . 
 

 ,Cov( , ) ( )( ) ( , )X Y X YX Y X Y f x y dxµ µ
+∞ +∞

−∞ −∞
= − −∫ ∫  (2.34) 

 
The covariance of two random variables X and Y provides a measure of how the two 
random variables are linearly correlated, and it hence indicates the linear relationship 
between the two random variables. The derived dimensionless quantity, known as 
correlation coefficient, is usually used, which is given by 
 

 ,

Cov( , )
X Y

X Y

X Y
ρ

σ σ
=  (2.35) 

 

Values of ,X Yρ  range between -1 and +1.  

• , 0X Yρ = , there is no linear relationship between X and Y . 
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• ,0 1X Yρ< < , there is a positive relationship between X and Y; Y increases as X 
increases. 
• ,1 0X Yρ− < < , there is a negative relationship between X and Y; Y decreases as X 
increases. 
• , 1X Yρ = , there is a perfect positive linear relationship between X and Y; Y linearly 
increases as X increases. 
• , 1X Yρ = − , there is a perfect negative linear relationship between X and Y; Y 
linearly decreases as X increases. 
 

 
Appendix  
MATLAB Statistics Toolbox 
 

The MATLAB Statistics Toolbox is a collection of statistical tools built on the MATLAB 
numeric computing environment. The toolbox supports a wide range of common 
statistical tasks, such as random number generation, curve fitting, Design of Experiments, 
and statistical process control. 
 
If a set of samples of a random variable exists, we can use the following functions to 
study the samples. 
 

 mean(X) – average or mean value 
 
For a vector x, mean(x) is the mean value of the samples in x. For a matrix x, mean(x) 
returns a row vector containing the mean value of each column in x.   
  

 std(X) – standard deviation 
 

For a vector x, std(x) returns the standard deviation. . For a matrix x, std(x) returns a row 
vector containing the standard deviation of each column in x.   
 

 skewness(X) –  skewness coefficient 
 

For a vector x, skewness(x) returns the sample skewness. . For a matrix x, skewness(x) 
returns a row vector containing the sample skewness of each column in x.  

 
 moment(X) –  central moments of all orders 
 

moment(x, order) returns the central moment of a vector x specified by the positive 
integer, order. For matrix, x, moment(x, order) returns central moments of the specified 
order for each column in x. 


