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Chapter Five 

Functions of Random Variables  
 
5.1 Introduction 

 
A general engineering analysis model is shown in Fig. 5.1. The model output (response) 
Y contains the performances of a system or product, such as weight, stress, cost, etc. The 
input variables to the model include both design variables and design parameters. Design 
variables are those that are controllable by engineers, such as material types and 
dimensions. Design parameters are not controllable, for example, environmental 
temperature, usage conditions, etc. If the input variables X are random, the response 
variable Y will also be random.  
 
 

 Analysis Model 
 

Y=g(X) 

X Y 

 
 

Figure 5.1 Engineering Analysis Model 
 

It is crucial to evaluate the probabilistic characteristics of response variables given those 
of input variables. This helps engineers understand the impact of the uncertainty 
associated with the input variables on the response variables. For example, the maximum 
stress that a component is subject to is one of response variables, and the applied external 
force is one of input variables. Engineers are interested in knowing the distribution of the 
maximum stress when they have information about the distribution of the external force. 
With the knowledge about how the maximum stress varies due to the randomness of the 
external force, engineers will be able to make appropriate decisions to accommodate the 
variations in the maximum stress. 
 
Mathematically, the task is to evaluate the distribution of a response variable given the 
distributions of input variables. In this chapter, we will discuss the theoretic derivation of 
probability distributions and statistical moments of a response variable from the 
distributions of input variables. Although the methodologies presented in this chapter 
may not be directly applicable and practical to real-world applications, the discussion will 
serve as a theoretic foundation to engineering uncertainty analysis and design under 
uncertainty.  

 
 
5.2 Functions of a Single Random Variable 

 
We will first discuss a function of only one random variable and then extend the 
discussion to general situations where multiple random variables are involved. 
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5.2.1  Linear Relationship 
 
Assume that random variable Y is a linear function of random variable X and the 
functional relationship is given by 
 
 Y a bX= +  (5.1) 
 
where a and b are constants. 
 
Since Y has a linear relationship with X, Y has the same distribution as X, but different 
distribution parameters, such as mean and variance.  
 
The cdf of Y is  
 

 ( )( ) ( ) ( ) ( )Y X

y a y a
F y P Y y P a bX y P X F

b b
− −

= ≤ = + ≤ = ≤ =  (5.2) 

 
The above equation shows that the cdf of Y has the same functional form as X. The pdf of 
Y can also be written in terms of the pdf of X as 
 

 
( ) 1

( ) ( )Y
Y X

dF y y a
f y f

dy b b
−

= =  (5.3) 

 
Based on Eq. 5.3, the mean of Y can be derived from that of X as 
  
 Y Xa bµ µ= +  (5.4) 
 
and the standard deviation of Y can be derived from that of X as 
 
 Y Xbσ σ=  (5.5) 
 
If X follows a normal distribution, i.e. ( , )X XX N µ σ∼ , Y will also follow a normal 
distribution and ( , ) ( , )Y Y X XY N N a b bµ σ µ σ= +∼ .  
 
Example 5.1  
 
For example, the tolerance of the length of a rectangular plate is large is assumed to be 
normally distributed with (10,0.5) cmX N∼ . Since the tolerance of the width is small, it 
is treated as a deterministic quantity without any randomness. The width is equal to 4 cm. 
The perimeter of the plate is 2 8Y X= + . Determine the distribution of Y. 
 
The mean value of Y is  
 
 8 2 10 28 cmY Xa bµ µ= + = + × =  
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The standard deviation of Y is 
 2 0.5 1 cmY Xbσ σ= = × =   
 
Since X is normally distributed, Y is also normally distributed. Its distributed is 

(28, 1) cmY N∼ . 
 

5.2.2.  Nonlinear Relationship 
 
If random variable Y is a nonlinear function of random variable X and ( )Y g X= , the cdf 
of Y is given by 
 

  [ ]
( )

( ) ( ) ( ) ( )Y Xg x y
F y P Y y P g X y f x dx

≤
= ≤ = ≤ = ∫  (5.6) 

 
The pdf of Y is given by 
 

 [ ]
( )

( ) ( ) ( )Y Y Xg x y

d d
f y F y f x dx

dy dy ≤

 = =   ∫  (5.7) 

 
Eqs. 5.6 and 5.7 are applicable to any continuous function ( )Y g X= .  
 
If random variable Y is a monotonically increasing or decreasing function of random 
variable X, Eqs. 5.6 and 5.7 can be evaluated conveniently. As shown in Fig. 5.2, since Y 
is a monotonically increasing or decreasing in terms of X,  1( )X g Y−=  will be a single-
valued function of Y, and Y y≤  is equivalent to X x≤ . Therefore, 
 
 1 1( ) ( ) ( ) ( ) [ ( )]Y XF y P Y y P X x P X g y F g y− − = ≤ = ≤ = ≤ =   (5.8) 
 

 
 

Figure 5.2 (a) Monotonically Increasing and (b) Decreasing Functions 
 

X 

Y 

y 

1 ( )x g y−=  X ≤ x 

Y ≤ y 

X 

Y 

y 

X ≤ x 

Y ≤ y 

(a) (b) 

1 ( )x g y−=  
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The pdf of Y is derived as 
 

 
1

1( ) ( ) ( )
( ) ( ) [ ( )]Y X

Y X X

dF y dF x dx dx dg y
f y f x f g y

dy dx dy dy dy

−
−= = = =  (5.9) 

 

Since a pdf is nonnegative and the derivative 
1( )dg y

dy

−

 can be negative, the absolute value 

of 
1( )dg y

dy

−

is used. Eq. 5.9 is then rewritten as 

 

 
1

1 ( )
( ) [ ( )]Y X

dg y
f y f g y

dy

−
−=  (5.10) 

 
 
Example 5.2 
 
If the diameter of the circular cross section of a transmission shaft is ~ ( , )X XX D N µ σ=  
(see Fig. 5.3), what is the probability density function of the cross sectional area 

2( )
4

Y A g X X
π

= = = ? 

 

 
Figure 5.3 A Transmission Shaft 

 

The function 2( )
4

Y g X A X
π

= = =  is shown in Fig. 5.3.  

 

A 

A 

B C A - A D 
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Fig. 5.3 Function 2( )
4

Y g X X
π

= =  

 

Fig. 5.3 graphically suggests that Y y≤  is equivalent to 
2

X y
π

≤ , and therefore, 

 

 2 2( ) ( )Y XF y P Y y P X y F y
π π

   = ≤ = ≤ =   
   

 

 
Differentiating the cdf gives the pdf  
 
 

 1 2( )Y Xf y f y
yπ π

 =  
 

 

 
Since  
 

 
2

1 1
( ) exp

22
X

X
XX

x
f x

µ
σπσ

  −
= −  

   
 

 
the pdf of Y is  then given by 
 

 

22
1 1

( ) exp
22

X

Y
XX

y
f y

y

µ
π

σπσ

  −  
 = −  
      

 

 
If the distribution of the diameter is (50, 1) mmX N∼ ,  the above equation gives the 
following distribution of the cross sectional area. 
 

X 

Y 

y 

Y ≤ y 

2
x y

π
=
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2
1 1 2( ) exp 50

22Yf y y
yπ π

  = − −  
   

 

 
The pdfs of X and Y are depicted in Fig. 5.4.  

 
 The same result can be obtained by using Eq. 10 directly.  
 

 1 2
( )g y y

π
− =  

 

 
1( ) 1dg y

dy yπ

−

=  

  
 

 Using Eq. 10 yield the same pdf 
 

 1 2( )Y Xf y f y
yπ π

 =  
 

  

 
   

 
 

Figure 5.4 (a) pdf of X and (b) pdf of Y  
 
 

5.3 Functions of Several Random Variables 
 
Consider a function of random variables 1 2( , , , )nX X XL   
 
 1 2( , , , )nY g X X X= L  (5.11) 
 

(a) (b) 
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If the joint pdf of 1 2( , , , )nX X XL  is 
1 2, , , 1 2( , , , )

nX X X nf x x xL L , the pdf of the function is 
given by 
 

 
1 2

1 2

, , , 1 2 1 2
( , , , )

( ) ( ) ( , , , ) ,
n

n

Y X X X n n
g x x x y

F y P Y y f x x x dx dx dx
≤

= ≤ = ∫ ∫ L
L

L L L  (5.12) 

 
For a general nonlinear function in engineering applications, it is very difficult or even 
impossible to use the above equation to obtain the cdf of the response variable. In 
uncertainty analysis that will be presented later in this book, we will discuss 
approximation methods to the probability integration in Eq. 5.12.  
 
It is possible to use Eq. 5.12 for some special cases. For example, if Y is a linear 
combination of independent normal variables ~ ( , ), 1,2, ,

i ii X XX N i nµ σ = L , then 
 

 0
1

n

i i
i

Y a a X
=

= + ∑  (5.13) 

 
in which ia  are constants, it can be shown that Y is also normally distributed with the 
following mean and variance 
 

 0
1

i

n

Y i X
i

a aµ µ
=

= +∑  (5.14) 

and 
 

 2 2 2

1
i

n

Y i X
i

aσ σ
=

= ∑  (5.15) 

 
 
Example 5.3 
 
As shown in Fig. 5.5, three torques that exert to a transmission shaft are normally 
distributed with 

1 11 1 ~ ( , ) (500,20) N mX XX T N Nµ σ= = ⋅ , 
2 22 2 ~ ( , )X XX T N µ σ=  

(150,5) N mN= ⋅ , and
3 33 3~ ( , ) (300,30) N mX XX T N Nµ σ= = ⋅ . What is the distribution 

of the resultant torque? 
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Figure 5.5 A Transmission Shaft 

 
The total torque T is the sum of the three individual torques, i.e. 
 
 1 2 3 1 2 3Y T T T T X X X= = + − = + −  
  
Y is also normally distributed with the following mean and standard deviation.  
 
 

1 2 3
500 150 300 350 N mY X X Xµ µ µ µ= + + = + − = ⋅  

 
And 
 

 
1 2 3

2 2 2 2 2 220 5 30 36.40 N mY X X Xσ σ σ σ= + + = + + = ⋅  
 
 

5.4 Moments of a Function of Several Random Variables 
 

As seen in Section 5.3, it is difficult to obtain the cdf or pdf of a response variable which 
is a general function of random variables. However, it is relatively easy to obtain the 
moments of the response variable for some special functions.  
 

5.4.1 Mean and Variance of a Linear Function 
 
If Y is a linear function of 1 2( , , , )nX X X=X L  with the following equation 
 

 0
1

n

i i
i

Y a a X
=

= + ∑  (5.16) 

 
in which ai are constants, similar to the derivation of Eqs. 5.2 and 5.3, the mean and 
variance of Y are given by 
 

 0
1

i

n

Y i X
i

a aµ µ
=

= +∑  (5.17) 

3T

2T

1T
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where 

iXµ  is the mean of iX , and 
 

 2 2 2

1 1 1
i i j

n n n

Y i X i j ij X X
i i j

j i

a a aσ σ ρ σ σ
= = =

≠

= +∑ ∑∑  (5.18) 

 
where 2

iXσ is the variance of iX and ijρ  is the correlation coefficient between iX  and jX . 
 
If 1 2( , , , )nX X XL  are mutually independent, Eq. 5.18 becomes 
 

 2 2 2

1
i

n

Y i X
i

aσ σ
=

= ∑  (5.19) 

 
 
5.4.2 Other Common Equations 

 
The moments of several common functions are provided below. γ  denotes the coefficient 
of skewness. δ  denotes the coefficient of variation and is given by 
 

 
σ

δ
µ

=  (5.20) 

 
1) 2Y aX bX c= + +   

 2 2 2 4 21
(2 )[2 ( ) ] (4 3 )

2Y X X X X X X Xa b a b aσ µ µ σ γ σ σ γ= + + + + +  (5.21) 

 3 2 2 23
( (2 ) [(2 ( ) (4 3 )

2Y Y X X X X X Xa b a b aγ σ σ µ µ γ σ γ−= + + + +  (5.22) 

  
2) nY aX=   
 

2 2 3 2 41 1 1
[1 ( 1) ( 1)( 2) ( 1)( 2)( 3)(2 ) ]

2 6 16Y X X X X X Xa n n n n n n n n nµ µ δ δ γ γ δ= + − + − − + − − − +   

  (5.23) 
 

 2 2( )n n
Y X Xan Aσ µ δ=  (5.24) 

 

 3 / 2.Y

a B
sign

n A
γ =   

 (5.25) 

 where 

 2 2 21 1
1 ( 1) ( 1)(3 5) ( 1)(7 11)

2 8X X X X XA n n n n nδ γ δ δ γ= + − + − − + − −  (5.26) 
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 23
( 1)(4 3 )

4X X XB nγ γ δ= + − +  (5.27) 

3) 
a

Y b
X

= +   

 

 2 3 4 4 23
(1 3 )

2Y X X X X X X
x

a
bµ δ δ γ δ δ γ

µ
= + − + + +  (5.28) 

 

 
2

2 2
2Y X
X

a
Aσ δ

µ
=  (5.29) 

 

 3 / 2( )Y

B
sign a

A
γ =  (5.30) 

 
 where  

 2 2 29
1 8

2X X X X XA δ γ δ δ γ= − + +  (5.31) 

 

 2 29
6

2X X X XB δ γ δ γ= − +  (5.32) 

4) 
X

Z a b
Y

= +   

 2 3 4 4 23
(1 3 )

2
X

Z Y Y Y Y Y Y
Y

a b
µ

µ δ δ γ δ δ γ
µ

= + − + + +  (5.33) 

 
2

2 2 X
Z

Y

a Aµσ
µ


= 

 
 (5.34) 

 3 / 2( )Z

B
sign a

A
γ =  (5.35) 

 
 where 

 2 2 3 4 2 2 4 29
2 8 3

2X X X Y Y X Y Y YA δ δ δ γ δ δ δ δ γ= + − + + +  (5.36) 

 3 3 4 2 2 4 29
6 6

2X X Y Y Y X Y Y YB δ γ δ γ δ δ δ δ γ= − + + +  (5.37) 

 

5) 
1

n

i i
i

Y a X b
=

= +∑   

 
1

i

n

Y i X
i

a bµ µ
=

= +∑  (5.38) 
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 2 2

1
i

n

Y i X
i

aσ σ
=

= ∑  (5.39) 

 

 3 3 3

1
i i

n

Y Y i X X
i

aγ σ σ γ−

=

= ∑  (5.40) 

 

6) 
1

n

i
i

Y a X b
=

= +∏   

 
1

i

n

Y X
i

a bµ γ
=

= +∏  (5.41) 

 

 
2

2

1
i

n

Y X
i

a Aσ µ
=

= 
 

∏  (5.42) 

 

 3 / 2( )Y

B
sign a

A
γ =  (5.43) 

 
 where 

 
1

2 2 2

1 1 1
i i j

n n n

X X X
i i j i

A δ δ δ
−

= = = +

= +∑ ∑ ∑  (5.44) 

 
1

3 2 2

1 1 1

6
i i i j

n n n

X X X X
i i j i

B δ γ δ δ
−

= = = +

= +∑ ∑ ∑  (5.45) 

 
 

5.5 Concluding Remarks 
 
Quantifying the uncertainty of response variables given the uncertainty of input variables 
is one of the most important tasks in many engineering design applications, such as 
reliability-based design, robust design, and design for Six Sigma. This can help engineers 
understand the impact of uncertainty associated with input variables on response 
variables. Quantifying the uncertainty of response variables therefore aids engineers to 
make proper decisions to mitigate the effects of input uncertainty. This chapter provides a 
fundamental introduction about how to evaluate the randomness of response variables 
from the distributions of input variables. 
 
The methods discussed in this chapter serve as a theoretic foundation for uncertainty 
analysis although they may not be directly applicable to real engineering problems. In 
engineering applications, response variables are usually nonlinear functions and involve a 
large number of random input variables. More practical methods for engineering 
applications will be discussed later in the following chapters. 


