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Chapter Six 

Basics of Uncertainty Analysis 
 

 

6.1 Introduction 
 

As shown in Fig. 6.1, analysis models are used to predict the performances or behaviors 

of a product under design. In what follows, we will call the model 

1 2
( ) ( , , , )

n
Y g g X X X= =X ⋯  performance function. The performance function ( )Y g= X  

specifies the relationship between the input X and output Y. As we discussed in Chapter 

one, there are various uncertainties associated with the model input. The uncertainty of 

the model input will be propagated through the model to the model output. It is essential 

to quantify the uncertainty associated with the model output in order to accommodate and 

manage the uncertainty in the model output.  

   

 

 
 

Figure 6.1 Analysis Model with Uncertain Input 

 

The task of uncertainty analysis is to quantify the uncertainty associated with the model 

output. Uncertainty analysis helps engineers understand how uncertainty of the model 

input impacts the uncertainty of the model output (product performance). Only with this 

understanding, engineers are able to manage and mitigate the effects of uncertainty by 

choosing appropriate design variables (part of model inputs X) during the design process. 

Through uncertainty analysis on an existing design, engineers can evaluate if the design 

satisfies all the requirements in the presence of uncertainty. For example, engineers will 

be able to know if the design is robust and if the design is safe. If the design is not 

satisfactory, the uncertainty analysis will provide engineers with useful guidance to 
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improving the design. Therefore, uncertainty analysis is an important and imperative 

stage for design under uncertainty. 

 

Before discussing various methods of uncertainty analysis, we will first introduce 

important concepts in uncertainty analysis, such as those of reliability and robustness. We 

will then provide an overview of the uncertainty analysis methods. 

 

 

6.2 Uncertainty Analysis Model 
 

The primary task of uncertainty analysis is to find the probabilistic characteristics of 

response variables (model outputs). The probabilistic characteristics include 

 

• Cumulative distribution function (cdf)  

• Probability density function (pdf) 

• Moments such as mean, standard deviation, skewness, and correlation coefficient 

• Percentile values and median 

 

Mathematically, the uncertainty analysis can be formulated as 

 

Given  1) Distributions of input variables 
1 2

( , , , )
n

X X X=X ⋯ , including the pdf 

( )
i

X i
f x  or cdf ( ),  1,2, ,

i
X i

F x i n= ⋯ , and their joint pdf or cdf 

 2) Performance function ( )Y g= X  

Find Probabilistic characteristics of Y, including 

 1) cdf ( )
Y

F y  

 2) pdf ( )
Y
f y  

 3) Moments: mean 
Y

µ , standard deviation 
Y

σ , etc 

 4) α percentile values Y α  

 

Not all the probabilistic characteristics specified above need to be identified in 

uncertainty analysis. Depending on specific applications, different probabilistic 

characteristics may be used. For example, for robust design, only the mean and standard 

deviation may be used.  

  

In some cases, we do not have adequate information about the distributions of input 

random variables, and we only know the moments (for example, mean and standard 

deviation). Then the uncertainty analysis problem becomes: Find the moments of the 

response variable 
1 2

( , , , )
n

Y g X X X= ⋯  given the moments of the input random variables 

1 2
( , , , )

n
X X X=X ⋯ . 
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6.3 Reliability  
 

Reliability is the probability of a product performing its intended function over its 

specified period of usage, and under specified operating conditions, in a manner that 

meets or exceeds customer expectations. 

 

The reliability methods can be roughly classified into two major types – math-based 

reliability and physics-based reliability. In the math-based reliability, the reliability of 

systems or components is evaluated based on testing. Systems and especially components 

are typically tested until they fail; the time to failure and failure modes are then recorded. 

The life related information is also commonly collected from field data. Then the 

statistical analysis is used to evaluate the system or component reliability, assess the risk, 

and improve reliability. The “empirical” and “testing” approaches of math-based 

reliability and their practical applications have existed in engineering fields for many 

years.  

 

Mathematically, the math-based reliability is defined by the function ( )R t , which 

represents the probability of success for a component or system in the time interval (0, )t . 

In other words, the reliability at the instant of time t is the probability of the life T greater 

than t, namely, 

 

 ( )( ) PR t T t= >  (6.1) 

 

The probability of failure is the complement of the reliability, i.e. 

 

 ( ) 1 ( )fp t R t= −  (6.2) 

 

Examples 2.5 and 2.6 in Chapter 2 presented the applications of math-based reliability in 

system reliability analysis. The reliability of each of the individual components is 

estimated from testing or filed data. Then the system reliability is estimated according to 

the component reliability and the logical relationship between the system and its 

components. 

 

With the fact that engineering design has evolved considerably, we are able to have a new 

paradigm shift – physics-based reliability with the aid of today’s synthesis and simulation 

approaches. In this sense, reliability can be computationally evaluated with physical 

equations (models) or computer simulations that specify the state of failure. For example, 

as demonstrated in Fig. 6.2 for an automotive vehicle in a “virtual” world, simulation 

models such as linear and nonlinear finite element analyses are created to predict the 

behaviors (including the failure events and crashes), and the reliability can be actually 

calculated based on the simulation models.  We will primarily focus on physics-based 

reliability in this book. 
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Figure 6.2 A Vehicle Impact FEA Model (Courtesy of Ford Motor Company) 

 

As mentioned previously, the model ( )Y g= X  specifies the relationship between the 

performance (response) Y and the input random variables X. When the performance 

reaches a certain threshold, the state of the component or system will change from safety 

to failure. The threshold value is called a limit state. If we use a threshold of zero as the 

limit state, then ( ) 0Y g= =X  divides the random variable space into safe and failure 

(unsafe) regions. When ( ) 0g >X , the product is considered safe, and when ( ) 0g <X , the 

product can no longer fulfill the function for which it was designed and therefore is 

considered as unsafe. Because of the above reason, performance function ( )Y g= X  is 

also called a limit-state function in the area of reliability analysis and reliability-based 

design. For convenience, we will use a threshold value of zero in the following 

discussions.  Fig. 6.3 shows the limit state for a two dimensional problem. 

 

 

 
Figure 6.3  The Concept of Limit State 

 

For example, if the performance function 
2 1

( )Y g X X= = −X  where 
2

X  and 
1

X are 

strength and stress, respectively. 
2 1

( ) 0Y g X X= = − =X  specifies the limit state,  

X1 

X2 

Limit state function g(X) = 0 
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2 1
( ) 0Y g X X= = − >X  (strength > stress) defines the safe region, and 

2 1
( ) 0Y g X X= = − <X  (strength < stress) defines the failure region. 

 

In physics-based reliability, the reliability is expressed by 

 

 [ ]P ( ) 0R g= ≥X  (6.3) 

 

and the probability of failure is expressed by 

 

 [ ]1 P ( ) 0fp R g= − = <X  (6.4) 

  

Since in engineering applications, reliability is usually high and the probability of failure 

is usually low, both of them are related to the left tail of the performance function. This is 

illustrated in Fig. 6.4.  

 

                                                                                                                                                                                                                                          

 
Figure 6.4 Reliability Concept 

 

For the aforementioned performance function 
2 1

( )Y g X X= = −X , the reliability is  

 

 [ ] ( )2 1
P ( ) 0 P 0R g X X= ≥ = − ≥X  (6.5) 

 

which is the probability of strength 
2

X  grater than the stress 
1

X . 

 

The input random variables may vary with time. (In this case, they called stochastic 

processes.) For example, the material strength may deteriorate with time and the loading 

of a structure may be a function of time. Therefore, the physics-based reliability may also 

be time dependent. In this sense, it is possible to relate the math-based reliability with 

physics-based reliability. When the reliability is time dependent, Eq. 6.5 becomes 

 

( )
Y
f y  

Probability of Failure fp   Reliability R 

0 y 

Tail area 
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 [ ]{ }( ) P ( ( ) 0R t g t= ≥X  (6.6) 

 

Table 1 summarizes the differences between the math-based reliability and physics-based 

reliability. 

 

Table 1 Differences between Two Types of Reliability 

 

Math-based reliability Physics-based reliability 

Reliability is related to life – the time to 

failure. 

Reliability is related to the limit state. 

The state change is observed. The state change can be mathematically 

modeled. 

Reliability evaluation relies on testing or 

field data. 

Reliability can be evaluated from physical 

equations (mdels). 

The reliability is defined by 

( )( ) PR t T t= >  

The reliability is defined by 

[ ]P ( ) 0R g= ≥X  

The reliability is time dependent. The reliability may or may not be time 

dependent. 

Typical methods include 

� Fault tree analysis (FTA) 
� Event tree analysis (ETA) 
� Failure models, effects, and criticality 

analysis (FMECA) 

� Markov process 

� Monte Carlo simulation 

Typical methods include 

� First order second moment (FOSA) 

method 

� First order reliability (FORM) method 

� Second order reliability (SORM) method 

� Design of Experiments (DOE) 

� Monte Carlo simulation 

 

The concept of physics-based reliability can be generally considered as the probability of 

success, probability of customer satisfaction, and so on. If a design has reliability less 

than the required level, conceptually, there are multiple ways to improve reliability or 

decrease the probability of failure, including 

 

1) Shrinking the distribution, 

2) Shifting the distribution, or  

3) Both.  

 

The idea is demonstrated in Fig. 6.5. Shrinking the distribution without changing the 

mean makes the distribution narrower and the area underneath the pdf in the failure 

region (Y<0) smaller; therefore, the probability of failure can be reduced. Shifting the 

mean of the entire distribution without changing the standard deviation also makes the 

probability of failure smaller. To improve the reliability through the above means, 

appropriate decisions on changing design variables are required. It is the task of 

reliability-based design.  
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Figure 6.5 Reliability Improvement 

 

 

 

6.4 Robustness 
 

The robustness of a system or component is the degree to which its properties 

(performances) are not affected by the uncertainties of input variables or uncertainties of 

environmental conditions. It measures the insensitivity of system or component 

properties to parameter variation and uncertainties in environment. 

 

Robustness is usually measured with the variance or standard deviation of the 

performance function ( )Y g= X . For two designs with the same mean value as shown in 

Fig. 6.6, Design 1 is more robust than Design 2 since the former has a narrower 

distribution (lower variance).  
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Figure 6.6 Robustness of Two Designs 

 

Both of reliability and robustness are critical constituents of high quality. However, 

reliability and robustness are conceptually different. As shown in Fig. 6.7, the differences 

are: 

 

1) Reliability is concerned with the performance distribution at the tails of the 

probability density function, while robustness is concerned with the performance 

distribution around the mean of the performance function.  

 

2) Reliability is more related to safety for the avoidance of extreme catastrophic 

events, while robustness deals with the everyday fluctuations and is more related 

to the avoidance of quality loss. 

 

 

 
Figure 6.6  Reliability versus Robustness 

 

Because of the difference between reliability and robustness, there are two different 

design methodologies dealing with reliability and robustness, namely, reliability-based 

( )
Y
f y  

0 y 
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y 
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design and robust design. As suggested by the name, reliability-based design makes a 

design reliable or ensures the probability of failure less than the required level. Robust 

design makes a design not sensitivity to uncertainty or reduces the variations of design 

performance. At the analysis level, we will first discuss how to assess reliability and 

robustness for a given design, and then at the design level, we will discuss both reliability 

–based design and robust design based on the results from reliability analysis and 

robustness assessment. 

 

The concepts of reliability and robustness can be further demonstrated from the domains 

of applications. Fig. 6.7 [1, 2] demonstrates the domains of applications. Two aspects are 

considered: the likelihood of events and the consequences of the events. No matter what 

consequences may be resulted in, reliability-based design (regions 2 and 4 in Fig. 6.7) is 

applied to make sure that extreme events will be unlikely. An example of reliability-

based design is to ensure that the probability of the downfall of a bridge be invariably 

small. Robust design (region 1 in Fig. 6.7) deals with everyday fluctuations so that the 

design is insensitive to such fluctuations. The everyday fluctuations may not lead to 

catastrophic consequences, but may lead to quality or performance losses, such as costly 

warranty and poor customer satisfactions. No design is acceptable if everyday 

fluctuations lead to catastrophe (region 3 in Fig. 6.7).  

 

 

 
Figure 6.7 Reliability-Based Design versus Robust Design 

 

 

 

6.5 Overview of Uncertainty Analysis 
 

The purpose of uncertainty analysis is to find the probabilistic characteristics of a 

performance function ( )Y g= X  given the distributions of random variables X.  
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The cdf of ( )Y g= X  is given by 

 

 [ ]( ) P ( )
Y

F y g y= ≤X  (6.7) 

 

According to Eq. 6.1, the probability of failure is the cdf of Y at 0y = , i.e. 

 

 [ ]P ( ) 0 (0)f Yp g F= ≤ =X  (6.8) 

 

Theoretically, ( )
Y

F y  can be evaluated by the following integral 

 

 
1 2
, , , 1 2 1 2

( )

( ) ( , , , )
n

Y X X X n n

g y

F y f x x x dx dx dx
≤

= ∫ ∫
x

⋯

⋯ ⋯ ⋯  (6.9) 

 

where 
1 2
, , ,

n
X X X
f

⋯

 is the joint pdf of X.   

 

If all the random variables are independent,  

 

 
1 2
, , ,

1

( )
n i

n

X X X X i

i

f f x
=

=∏⋯

 (6.10) 

 

in which 
i

X
f  is the pdf of Xi.  ( )

Y
F y  is then given by 

 

 
1 2

1( )

( ) ( )
i

n

Y X i n

ig y

F y f x dx dx dx
=≤

= ∏∫ ∫
x

⋯ ⋯  (6.11) 

 

If changing the values of y sequentially in Eq. 6.9, we can generate a complete cdf of the 

performance function. Based on the cdf, other probabilistic characteristics of the 

performance function can be easily obtained. 

 

There are many complexities in the evaluation of the integration in Eq. 6.9. The 

performance function ( )g X  is usually a nonlinear function of X; therefore, the 

integration boundary ( )g y=x  is nonlinear. Since the number of random variables in 

practical applications is usually high, multidimensional integration is involved. In many 

cases, the evaluation of the performance function is computationally expensive. For 

example, the performance function is a black box, such as those of finite analysis and 

computational fluid dynamics. Due to the complexities, there is rarely a closed-form 

solution to the probability integration. It is also often difficult to evaluate the probability 

with numerical methods. Therefore, numerical approximation methods have been 

developed to solve the probability integration. We will discuss some of them in the 

following chapters.  
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It is worthwhile to note that an uncertainty analysis is much more computationally 

expensive than a deterministic analysis. To obtain the probabilistic characteristics of the 

performance function, many deterministic analyses have to be conducted in the vicinity 

of a design point that is under consideration. This is demonstrated in Fig. 6.8. 

 

 

 
Figure 6.8 Uncertainty Analysis Needs Many Deterministic Analyses 

 

Three categories of methods exist for the task of uncertainty analysis. The first category 

of uncertainty analysis methods originated from structural reliability analysis. In these 

methods, the performance function ( )g X  is approximated such that the analytical 

probability integration can be easily obtained. We will discuss reliability based methods 

in Chapter 7 and other approximation methods in Chapter 8. 

 

The second category is the sampling-based approach such as Monte Carlo simulation. 

Computational simulation is conducted to generate a sufficient large number of samples 

of the performance, and then the samples are analyzed statistically to get the probabilistic 

characteristics. Monte Carlo simulation will be discussed in Chapter 9. 

 

The third category is the use of surrogate models to replace the performance function 

( )g X  by Design of Experiments. The major reason of using surrogate models is the 

evaluation of the original performance function is computationally expensive in many 

engineering problems. The use of surrogate models will alleviate the computational 
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burden in uncertainty analysis. We will discuss this type of methods in Chapter 10. 
 

6.6 Conclusive Remarks 

 

We have discussed the task of uncertainty analysis and introduced two important 

concepts: reliability and robustness. We have also given the mathematical formulation of 

the cdf of a performance function. Since the mathematical formulation of the cdf of the 

performance function is in a form of multidimensional integral with nonlinear integration 

region, computational difficulties are unavoidable. To overcome the difficulties, three 

types of methods, reliability analysis based methods, simulation methods, and surrogate 

models based methods, are typically used in engineering analysis and design. All of these 

methods will be discussed in the following chapters. 
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