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Chapter 9 

Other Uncertainty Analysis Methods 
 
9.1 Introduction 
 

In Chapter 7, we have discussed reliability analysis methods FORM and SORM. Both of 
the methods can provide reasonably accurate reliability analysis results. But they may be 
inefficient when the number of random variables is large and when the derivative of a 
performance function is evaluated numerically (for example, through the finite difference 
method). The reason is that both of the methods require searching the MPP and that this 
search process involves a number of deterministic analyses. Furthermore, the 
distributions of the input random variables have to be known. In some engineering 
applications, a precise distribution of a random variable may not be available because of 
limited information. For example, only a small sample size of a random variable is 
available, only the mean and standard deviation can be obtained, or only the interval 
where a random variable resides is known. For these situations, one may consider using 
the moment matching method or the worst case analysis method that we will discuss 
below. If the evaluation of the performance function is computationally expensive, a 
simplified model must be created to replace the original performance function for the 
uncertainty analysis purpose. Response surface method (RSM) is one of such methods 
and will also be discussed in this chapter. 
 
 

9.2 Moment Matching Method 
 
If the first two moments (mean and standard deviation) of a random variable are known, 
the moment matching method can be used to estimate the mean and standard deviation of 
a performance function. Then the mean and standard deviation of the performance 
function may be used to estimate the probability of failure. 
 
Assume that the random variables ( )1 2, , , nX X X=X L  are mutually independent and that 

the means and standard deviations of ( )1 2, , , nX X X=X L  are ( )1 2, , , nµ µ µ=µ L  and 

( )1 2, , , nσ σ σ=s L , respectively. The first order Taylor expansion of the performance 

function ( )1 2( ) , , , ng g X X X=X L  at the means ( )1 2, , , nµ µ µ=µ L  provides the 
following linearization 
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where ( )g∇ µ  is the gradient of ( )g U  at ( )1 2, , , nµ µ µ=µ L .  ( )g∇ µ  is given by 
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Then, the mean of ( )g X  is approximated by the mean of the linearized function ( )L X  
and is given by 
 

 ( )g gµ ≈ µ . (9.3) 
 
The standard deviation of ( )g X  is given by 
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If the input random variables ( )1 2, , , nX X X=X L  are assumed to be normally 

distributed, the linearized performance function ( )L X is also normally distributed since 
( )L X is a linear combination of normal variables. The probability of failure is therefore 

computed by 
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The moment matching method is also called the first order and the second moment 
(FOSM) method since it involves the first order derivative and second moment. Two 
approximations are used in the moment matching method – the distributions of random 
variables ( )1 2, , , nX X X=X L  are assumed normally distributed, and the performance 

function ( )g X  is linearized at the means of ( )1 2, , , nX X X=X L .  
 
FOSM does not need the MPP search and it is more efficient than both FORM and 
SORM. If the derivative of ( )g X  is evaluated numerically by the finite difference 
method, the total number of function evaluation is n + 1. n evaluations are for the 
derivative calculation, and one evaluation is for the calculation of the performance at the 
means of  ( )1 2, , , nX X X=X L . In many cases, FOSM can provide satisfactorily accurate 
results. Because of its easiness and efficiency, FOSM has been widely used, especially in 
probabilistic mechanical component design and robust design.  
 
However, FOSM is not accurate as FORM or SORM in general. As shown in Fig. 9.1, 
the probability of failure fp  is estimated by the probability integration over the hatched 
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region, which is on the upper right side of the straight line ( ) ( )( ) 0Tg g+ ∇ − =µ µ X µ . 
The actual probability integration region is the shaded region that is on the upper right 
side of the curve ( ) 0g =X . Because of the approximations, FORM may result in a 
significant error for highly nonlinear functions with random variables that follow 
nonnormal distributions. 
 

 
 

Figure 9.1 Approximations in Moment Matching Method 
 
Example 9.1 – reliability analysis of the cantilever beam 
 

 Use FORM to solve Example 7.2. 
 

The performance function is given by 
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where ~ (500,100)xP N lb  and ~ (1000,100)yP N lb , and the other parameters in the 
above equation are constants (see Example 7.2). The gradient of the performance 
function is given by 
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The mean of ( )g X  is computed by 
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and the standard deviation of ( )g X  is computed by 
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The probability of failure is then calculated by 
 

 0.6708{ ( ) 0} ( ) 0.03622
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U .  

 
The solution of the probability of failure from Monte Carlo Simulation with 105 
simulations is 0.04143fp =  (see Example 8.2), and the solution from FORM is 

0.040541fp =  (see Example 7.2). If we consider the Monte Carlo Simulation solution as 
the accurate solution, the solution from FOSM is not as accurate as that of FORM. 
However, FOSM is much more efficient than FORM since the former does not need to 
search the MPP. 
 
As the example demonstrates, FOSM only requires the function value and its gradient at 
the means of random variables. It is efficient and is therefore widely used in many 
engineering applications, especially in robust design. It should be noted that one potential 
problem of FOSM is that if a performance function expressed by another equivalent 
formulation, the solution of the probability of failure may vary. For example, if the above 
performance function is rewritten with an equivalent formulation 
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the probability of failure from FOSM will become 0.0205fp = , which is quite different 
from the solution based on the original formulation.  
 
FOSM is also commonly applied in probabilistic mechanical component design. The 
following example demonstrates such an application.  
 
 
Example 9.2 – probabilistic shaft design 
 
A shaft subjected to an axial forces Q is shown in Fig. 9.2. The mean and standard 
deviation of Q are 40 kNQµ = and 1.2 kNQσ = , respectively. The mean and standard 

deviation of the yield strength Sy are 667 MPa
ySµ = and 25.3 MPa

ySσ = , respectively.  

The standard deviation of the shaft radius r is 310  mrσ −= . Determine the mean of the 
radius rµ such that the reliability of the component is 0.999R = . 

 
Figure 9.2 A Shaft Subjected to Axial Forces 

 
In this design problem, there is only one design variable, which is the radius of the shaft. 
For comparison, the conventional (deterministic) design is also given below. 
 
Deterministic design 
 
In the deterministic design, the means (nominal values) are used. To make sure that the 
design is safe enough, a large safety factor 3FS =  is chosen. The normal stress of the 
shaft is calculated by 
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From the definition of the safety factor FS   
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The radius is then determined by 
  

   
3
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Probabilistic design 
 
The performance function is defined as 
 

   2y y

Q
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The mean of g is given by 
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The standard deviation of g is calculated by 
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Then, the probability of failure is computed by 
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.  

Therefore,  
 

   1(1 )g

g

R
µ
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−−

= Φ − ,  

or,  
  
   1(1 ) 0g gRµ σ−+ Φ − = .  
 

Substituting the equations of gµ  and gσ  into the above equation yields 
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which is  
 

( ) ( ) ( )
2 23 3

2 2 26 1 3 3 6
2 2 3

40 10 1 40 10
667 10 (1 0.999) 1.2 10 4 1 10 25.3 10 0

r r rπµ πµ πµ
− −  × ×

× − + Φ − × + × + × =  
  

 

 
The solution to the above equation is -36.22 10  m 6.22 mmrµ = × = .  
 
Comparing the result from the probabilistic design and that of the deterministic design, it 
is seen that the latter is much more conservative because it requires a larger radius. With 
the required reliability of 0.999, the deterministic approach “over designed” the 
component and resulted in a higher reliability than required. (Interested readers may want 
to calculate the reliability for the deterministic design.)  On the other hand, if a smaller 
factor of safety (e.g. 1.5) were used, the deterministic design would be risky since the 
reliability would be less than the required value. 
 
As discussed previously, FOSM may not result in accurate reliability estimation. If higher 
accuracy is desired for the design, one should use the advanced probabilistic design 
methods that will be discussed in Part III in this book.  
 
 

9.3 Worst Case Analysis 
 
Some times the information about random variables may be limited. We only know the 
interval over which a random variable may reside. Some of the situations where the 
uncertainties are characterized with intervals are as follows.   
 
(1) “Sometimes a quantity may not have been studied at all, and the only real information 
about it comes from theoretical constraints. Physical limits may be used to circumscribe 
possible ranges of quantities even when no empirical information about them is 
available.” [1] 
 
(2) Condition monitoring calls for periodic inspection of components. A component may 
be in working condition at one inspection, but in failure condition at the next. The time to 
failure is therefore in a window of time between the last two inspections during which the 
component failed. 
 
(3) A measurement from a device is associated with an interval based on the number of 
reported digits. For example, the value 9.32 may be associated with the interval [9.30, 
9.35] where the two endpoints are the two closest landmark values. 
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(4) Design engineers often specify their design variables in the form of nominal values 
plus-or-minus tolerances. For a completely new design, it is hard to know how the design 
variables could be distributed over the tolerance ranges before physical deployment [2]. 
 
(5) Many engineering formulations have their application limits. Intervals are used to 
identify the choices of formulations. For example, if the ratio of thickness to internal 
diameter of a cylinder is between 1.1 and 1.2, the cylinder is considered as a thin-wall 
cylinder; if the ratio is greater than 1.2, it is considered as a thick-wall cylinder [2].   
 
(6) Analysis engineers often estimate the analysis error by the percentage of the nominal 
analysis results. For example, for a particular application, a finite element analysis may 
be reported to have a 10% error [2]. 
 
For situations where only intervals of random variables are known, we can use the worst 
case analysis to find the interval of a performance function.  
 
Assume that the interval for random variable iX  is [ ,  ]i ia b , then its average is given by 
 

 
2

i i
i

a b
X

+
= . (9.7) 

 
Obviously, the distance between the average and one of the endpoints is half of the range 

i ib a− , namely,  
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The procedure of worst case analysis is described as follows.  
 
First, the performance function is linearized by the first order Taylor expansion at the 

average of the input random variables ( )1 2, , , nX X X=X L  by 
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The average of the performance function is evaluated at the average 

( )1 2, , , nX X X=X L , namely, 

 ( ) ( )g g=X X . (9.10) 
 
The deviation of the performance function from its average is then given by 
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Because we are interested in the worst case, we take the absolution values of the 
derivatives in the above equation and use the maximum changes of random variables i∆ . 
Then, the worst case difference (the maximum difference) of the performance function is 
given by 

 

 ( )
1 1

( ) 1 ( )
2

n n

i i i
i ii i

g g
g X b a

X X= =

∂ ∂
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. (9.12) 

 
Therefore, the performance will vary in the follow range, 
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If the safe region is defined by ( ) 0g >X , the worst case performance function will be 

g g− ∆ , and this worst case value should be greater than 0, namely, 0.g g− ∆ >  
 
It should be noted that the above method for identifying the worst case of the 
performance function is an approximation. The approximation comes from using the first 
order Taylor expansion and taking the absolute value of the derivatives. Therefore, the 
solution from Eq. 9.12 has some error. To accurately identify the worst case value of a 
performance function, the maximum (or minimum) value of the performance has to be 
searched over the ranges of all the input variables. Optimization techniques can be used 
for this purpose. It should also be noted that the results from the worst case scenario may 
be too conservative. 
 
Example 9.3 – worst case analysis of the cantilever beam 
 
The same beam problem as in Example 9.1 is used to demonstrate the worst case analysis 
method. The tip displacement of the cantilever beam is given by 
 

   
2 23

2 2

4 y x
PL Pg

Ewt t w
 = +     

,  

 
where the external forces xP  and yP  are known in the intervals  [400, 600]  and 

[800, 1200] , respectively. Therefore, 100xP∆ = , and 200yP∆ = . 
 
The averages of xP  and yP  are 500xP =  and 1000yP = , respectively. The average of g  
is computed by 
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The gradient of g  at the averages of xP  and yP  is given by 
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Then, 
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∂ ∂
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Thus, the range of the performance function is given by 
 

 [ ] [ ]min max, , = 0.2515,1.09  ing g g g g g = − ∆ + ∆  . 

 
The largest (worst case) displacement is  
 

 =1.09 inworstg g g= + ∆ . 
 
If the allowable tip displacement is 1.5, the design will be considered safe. However, if 
the allowable tip displacement is 1.0, the design will be considered as a failure; in this 
case, the design has to be modified. 
 
Example 9.4 – shaft design by worst case analysis 
 
The shaft design problem in Example 9.2 is solved again by the worst case analysis. The 
ranges of the random variables are set to 3 standard deviations, namely, 

33 3 10  mrr σ −∆ = = × , 3 3 1.2 3.6 kNQQ σ∆ = = × = , 3 3 25.3 75.9 MPa
y yS Sσ∆ = = × = . 
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The averages of the uncertain variables are r , 40 kNQ = , and 66.7 MPayS = . The 
average radius r  is to be determined. 
 
The average performance function is given by 
 

2y
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The range of g is given by 
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The worst case g is g g− ∆  and should be greater than zero; therefore, 
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which yields the following eqaution 
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× − − × + × + × =  
  

. 

 
Solving the above equation yields the design variable, 6.6 mmr = , which is greater than 
the radius obtained from moment matching method. This indicates that the worst case 
analysis may result in a conservative design.  
 
 

9.4 Response Surface Method 
 
In many engineering applications, the evaluation of a performance function is 
computationally expensive. Uncertainty analysis needs a number of such evaluations. 
One solution to this problem is to create a surrogate model to replace the original 
expensive performance function. The evaluation of a surrogate model is much cheaper 
than that of the original performance function. The basic idea is to perform a number of 
experiments (numerically or physically) at different design points (or inputs), and then 
the performance function values and corresponding inputs are used to fit the simplified 
surrogate model. This process is called Design of Experiments (DOE), or more precisely, 
Computer Design of Experiments if the experiments are conducted numerically.  Once a 
surrogate model is established, the uncertainty analysis methods such as Monte Carlo 
Simulation, FORM, and SORM can be applied for uncertainty analysis. 
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There are several tasks in DOE, including selecting the type of surrogate model, 
identifying design points where the experiments will be performed, and solving the 
unknown coefficients of the surrogate model. Generally, the functions which can accurate 
represent the original function and need a small number of experiments are favorable. 
Response Surface Model (RSM) is one of those functions. RSM is a polynomial type of 
function. Next we will use a simple example to discuss RSM with the following 
procedure.   
 
The general procedure of RSM method is as follows. 
 
Step 1:  Determine the design (input) variables and response variables.  
Step 2:  Determine the design variable bounds.  
Step 3:  Plan the experiment, including the number of experiments, levels of design           
variables, and the type of response surface. 
Step 4:  Perform experiment to obtain the response variables at the design points 
determined in Step 3. 
Step 5:  Determine the unknown coefficients of the response surface model and perform 
other analyses such as sensitivity analysis. 
Step 6:  Use the response surface model for uncertainty analysis. 
 
Next, a simple example will be used to demonstrate a 2-level full factorial design, where 
two points (levels) of each design variable and all the combinations of design variable 
levels are used. In this example, the response Y is calculated a some computer simulation 
program, which is very time consuming. To get a cheaper model of the response in terms 
of design variables, the DOE is performed. The design variables include two continuous 
variables X1 and X2, and a discrete variable X3 that takes values of either A or B. 
 
Step 1: Determine the design variables and response variables 
The design variables are the dimensional variables X1 and X2, and the material type X3. 
The first two dimensional design variables are considered continuous, and the last design 
variable X3 is a discrete variable since it represents the type of materials. 
 
Step 2: Determine the design variable bounds 
The bounds of X1 are [ ] [ ]1min 1max, 160, 170X X mm= −  and [ ] [ ]2min 2max, 20, 40X X mm= − ,  
respectively. There are two material types available; therefore X3 can be either Type A or 
Type B. 
 
Step 3: Plan the experiment 
Two levels for each design variable are considered for the experiment. For simplicity, all 
the design variables are transformed at the scale of [-1, +1], where -1 stands for the lower 
bound miniX , and +1 stands for the upper bound maxiX . A continuous design variable '

iX  
at the scale of [-1, +1] is then expressed by 
 

 ' min

max min

2( )
1i i

i
i i

X X
X

X X
−

= −
−

. (9.14) 
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A two-level full factorial design is used for this problem. All the combinations (design 
points) of two levels of the design variables are considered, and the two levels are 
selected on the lower bounds and upper bounds of the design variables. The following 
table gives the design points. (The table is called DOE matrix). There are 8 experiments 
in the table. For X3, -1 represents Type A material, and +1 represents Type B material. 
 

Table 9.1 DOE Matrix 
Experiment '

1X  '
2X  '

3X  
1 -1 -1 -1 
2 1 -1 -1 
3 -1 1 -1 
4 1 1 -1 
5 -1 -1 1 
6 1 -1 1 
7 -1 1 1 
8 1 1 1 

 
 
A linear function of the stress Y is selected for the RSM, which is given by 
 

 ' ' ' ' ' ' '
0 1 0 2 2 3 3Y X X Xβ β β β= + + + , (9.15) 

 
where '  ( 0,1,2,3)i iβ =  are unknown coefficients.  
 
The DOE matrix is visualized in Fig. 9.3, where the circles represent the design points.  
 

 
Figure 9.3 The visualization of the DOE Matrix 

 
Since 8 values of the response Y are to be obtained from the 8 experiments, maximally, 8 
unknown coefficients can be included in the RSM. Therefore, the following higher order 
polynomial with 8 unknown coefficients and interaction terms is also an alternative RSM. 
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 ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '

0 1 0 2 2 3 3 12 1 2 13 1 3 23 2 3 123 1 2 3Y X X X X X X X X X X X Xβ β β β β β β β= + + + + + + + , (9.16) 
 
in which ' ' ' '

12 13 23 123,  ,  ,  and β β β β  are additional undetermined coefficients. 
 
Step 4: Perform experiment to obtain the response  
 
The FEA is performed at the 8 design points given in Table 9.1 and Fig. 9.3. The 
calculated stresses expY  are listed in Table 9.2. 
 

Table 9.2 DOE Matrix 
Experiment '

1X  '
2X  '

3X  expY  
1 -1 -1 -1 60 
2 1 -1 -1 72 
3 -1 1 -1 54 
4 1 1 -1 68 
5 -1 -1 1 52 
6 1 -1 1 83 
7 -1 1 1 45 
8 1 1 1 80 

 
The experimental results are also plotted in Fig. 9.3, where the quantities within the 
circles are the response variable Y calculated from the FEA simulation.  
 
Step 5: Determine the unknown coefficients of the RSM  
 
The undetermined coefficients are solved out with the least square difference between the 
predicted response from Eqs. 9.15 or 9.16 and the experimental results expY . The model 
for solving the undetermined coefficients is given by 
 

 ( )
28

exp ' ' ' ' ' ' '
0 1 0 2 2 3 3

1

 i
i

Min Y X X Xβ β β β
=

 − + + + ∑  (9.17) 

 
for the leaner model in Eq. 9.15, and 
 

 ( )
28

exp ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '
0 1 0 2 2 3 3 12 1 2 13 1 3 23 2 3 123 1 2 3

1

 i
i

Min Y X X X X X X X X X X X Xβ β β β β β β β
=

 − + + + + + + + ∑ , (9.18) 

  
for the quadratic model in Eq. 9.16.  
 
Eqs. 9.17 and 9.18 can be solved by optimization. Alternatively, based on the above 
models, the coefficients can also be calculated as follows. 
 
The first coefficient is the average of the responses from the experiment, 
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Yβ
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The coefficients of the first order terms ' ' '

1 2 3,  ,  and β β β  are calculated from the main 

effects. The main effect iE  of variable '
iX  is the average change when '

iX  change from -
1 to +1 while other variables remain unchanged at their averages. Therefore the main 
effect iE  is computed as the difference between the average value iP+  of the response at 

the '
iX  high level (+1) and the average value iP−  of the response at the '

iX  low level (-1). 

For  '
1X , '

1β  is computed as follows. 
 
The average response at '

1X  high level (+1) (see Fig. 9.4) is, 
 

 exp exp exp exp
1 2 4 6 8

1 1
( ) (72 68 83 80) 75.75

4 4
P Y Y Y Y+ = + + + = + + + = ,  

  
and the average response at '

1X  low level (-1) is,   
 

 exp exp exp exp
1 1 3 5 7

1 1
( ) (60+54+52+45) 52.75

4 4
P Y Y Y Y− = + + + = = . 

 
The main effect of '

1X is given by 
 

 1 1 1 (75.75 52.75) 23E P P+ −= − = − = . 
 

 
 

Figure 9.4 The Main Effect of '
1X  
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The coefficient of '
iX is half of the main effect iE , namely, 

 

 1
2i iEβ = . (9.19) 

 
Therefore,  

 
 1 1 / 2 11.5Eβ = = .  

 

Similarly, ' '
2 3 and β β  are calculated as follows. 

 

 exp exp exp exp
2 3 4 7 8

1 1
( ) (54+68+45+80) 61.75

4 4
P Y Y Y Y+ = + + + = =  (see Fig. 9.5),  

 

 exp exp exp exp
2 1 2 5 6

1 1
( ) (60+72+52+83) 66.75

4 4
P Y Y Y Y− = + + + = = ,  

 
 2 2 2 61.75 66.75 5E P P+ −= − = − = − .  
 

Hence,  
  2 2 / 2 2.5Eβ = = − .  
 
 

 
Figure 9.5 The Main Effect of '

2X  
 

   exp exp exp exp
3 4 5 6 7

1 1
( ) (52+83+45+80) 65

4 4
P Y Y Y Y+ = + + + = =  (see Fig. 9.5),  
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   exp exp exp exp
3 1 2 3 4

1 1
( ) (60+72+54+68) 63.5

4 4
P Y Y Y Y− = + + + = = ,  

 
   3 3 3 63.5 65 2.5E P P+ −= − = − = − .  
 

Hence,  
   3 3 / 2 1.25Eβ = = − . 

 (9.32) 

 
Figure 9.6 The Main Effect of '

3X  
 

Therefore, the linear RSM is obtained, which is given by 
 

   ' ' '
1 2 364.25 11.5 2.5 0.75Y X X X= + − + . (9.20) 

 
Using Eq. 9.14, '

1X , '
2X , and '

3X  are transformed into original variables, and then the 
RSM is rewritten in terms of the original variables as below. 
 

   1 2
3

2( 160) 2( 20)
64.25 11.5 1 2.5 1 0.75

170 160 40 20
X X

Y X
+ +   = + − − − +   + +   

.  

 
Or 

 
   1 2 364.73+0.0697 0.0833 0.75Y X X X= − + . (9.21) 

 
In the quadratic model in Eq. 9.16, the interaction terms are included. If treating ' '

1 2X X , 
' '

1 3X X , ' '
1 3X X , and ' ' '

1 2 3X X X  as three new individual variables, we can use the same 
approach as we did above to calculate the coefficients of the interaction terms. For this 

83 

80 

52 

45 

x1 

x3 

x2 
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- 

54 
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68 
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purpose, Table 9.3 is then rewritten in order to include the new variables (the 
interactions). The table is given below. 
 

Table 9.4 Experimental Results 
Experiment '

1X  '
2X  '

3X  ' '
1 2X X  ' '

1 3X X  ' '
2 3X X  ' ' '

1 2 3X X X  expY  
1 -1 -1 -1 1 1 1 -1 60 
2 1 -1 -1 -1 -1 1 1 72 
3 -1 1 -1 -1 1 -1 1 54 
4 1 1 -1 1 -1 -1 -1 68 
5 -1 -1 1 1 -1 -1 1 52 
6 1 -1 1 -1 1 -1 -1 83 
7 -1 1 1 -1 -1 1 -1 45 
8 1 1 1 1 1 1 1 80 

 
The calculations are given below. 
 

   12 1 4 5 8

1 1
( ) (60 68 52 80) 65

4 4
P Y Y Y Y+ = + + + = + + + = .  

 

   12 2 3 6 7

1 1
( ) (72+54+83+45) 63.5

4 4
P Y Y Y Y− = + + + = = .  

 
   12 12 12 (65 63.5) 1.5E P P+ −= − = − = .  
 
   12 12 / 2 0.75Eβ = = .  
 

   13 1 3 6 8

1 1
( ) (60+54+83+80) 69.25

4 4
P Y Y Y Y+ = + + + = = .  

 

   13 2 4 5 7

1 1
( ) (72+68+52+45) 59.25

4 4
P Y Y Y Y− = + + + = = .  

 
   13 13 13 (69.25 59.25) 10E P P+ −= − = − = .  
 
   13 13 / 2 5Eβ = = .  
 

   23 1 2 7 8

1 1
( ) (60+72+45+80)  64.25

4 4
P Y Y Y Y+ = + + + = = .  

 

   23 3 4 5 6

1 1
( ) (54+68+52+83) 64.25

4 4
P Y Y Y Y− = + + + = = .  

 
   23 23 23 (64.25 64.25) 0E P P+ −= − = − = .  
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   23 23 / 2 0Eβ = = .  
 

   123 2 3 5 8

1 1
( ) (72+54+52+80) 64.5

4 4
P Y Y Y Y+ = + + + = = .  

 

   123 1 4 6 7

1 1
( ) (60+68+83+45) 64

4 4
P Y Y Y Y− = + + + = = .  

 
   123 123 123 (64.5 64) 0.5E P P+ −= − = − = .  
 
   123 123 / 2 0.25Eβ = = .  

 
Therefore, the nonlinear RSM is given by 
 

   ' ' ' ' ' ' ' ' ' '
1 2 3 1 2 1 3 1 2 364.25 11.5 2.5 0.75 0.75 5 0.25Y X X X X X X X X X X= + − + + + + . (9.22) 

 
Using Eq. 9.14, we can obtain the RSM in terms of the original variables below. 
 

   

1 2
3

1 2 1
3

1 2
3

2( 160) 2( 20)64.25 11.5 1 2.5 1 0.75
170 160 40 20

2( 160) 2( 20) 2( 160)
0.75 1 1 5 1

170 160 40 20 170 160

2( 160) 2( 20)0.25 1 1
170 160 40 20

X XY X

X X X
X

X X X

+ +   = + − − − +   + +   
+ + +    + − − + −    + + +    
+ +  + − −  + +  

  

 
Or, 
 

   1 2 3 1 2 2 364.74 0.0682 0.0841 0.5985 +0.0002 +0.0303Y X X X X X X X= − − − . (9.23) 
 
Step 6: Use the response surface model for uncertainty analysis. 

  
After the RSM is obtained, the original expensive FEA model will be replaced for 
uncertainty analysis and probabilistic design. Step 6 will be demonstrated in the 
following example. 
 
Example 9.5 – RSM based reliability analysis of the cantilever beam 

  
We will use RSM to solve the reliability analysis for the cantilever beam given in 
Examples 7.2 and 9.1 In this problem, in addition to the random variables 

~ (500,40)xP N lb  and ~ (1000,80)yP N lb , the Young’s modulus E is also considered 

normally distributed with 6 5~ (30 10 ,10 10 )E N psi× × . Next, we will create a RSM in 
terms of the three random variables by using the 2-level full factorial design.  
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Step 1: Determine the design variables and response variables  
 
The design variables are the three random variables xP , yP , and E . The response 
variable is the tip deflection of the beam, Y, which is given by 
 

   
2 23

2 2

4 y x
PL PY

Ewt t w
 = +     

,  

 
in which all the constants are the same as in Example 7.2. 
 
Step 2: Determine the design variable bounds 
 
The lower and upper bounds are determined by “ 3σ ” principle. The bounds are given by 
 

   [ ] [ ]min max, 3 ,  3 380, 620
x x x xx x P P P PP P µ σ µ σ = − + =  , 

 

   [ ]min max, 3 ,  3 760, 1240
y y y yy y P P P PP P µ σ µ σ   = − + =    , 

 
and 

 
   [ ] [ ] 6 6

min max, 3 ,  3 27 10 ,33 10E E E EE E µ σ µ σ  = − + = × ×  . 
 
Step 3: Plan the experiment 
 
Two levels for each design variable are considered for the experiments. The intended 
RSM is given by 
 

 ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '
0 1 2 3 12 13 23 123x y x y x y x yY P P E P P P E P E P P Eβ β β β β β β β= + + + + + + + . 

 
The DOE matrix is given in Table 9.5, and the values of the random variables are shown 
in brackets. 
 
Step 4: Perform experiment to obtain the response  
 
The tip deflections at the 8 design points are calculated and are listed in Table 9.5. 
 

Table 9.5 DOE Matrix and Experimental Results 
Experiment '

xP (lb) '
yP ( lb) 'E (psi) expY (in) 

1 -1 (380) -1 (760) -1 (27×106 ) 1.9669 
2 1 (620) -1 (760) -1 (27×106 ) 3.0021 
3 -1 (380) 1 (1240) -1 (27×106 ) 2.2704 
4 1 (620) 1 (1240) -1 (27×106 ) 3.2092 
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5 -1 (380) -1 (760) 1 (33×106 ) 1.6093 
6 1 (620) -1 (760) 1 (33×106 ) 2.4563 
7 -1 (380) 1 (1240) 1 (33×106 ) 1.8576 
8 1 (620) 1 (1240) 1 (33×106 ) 2.6257 

 
Step 5: Determine the unknown coefficients of the response surface model  
 
The unknown coefficients are computed using the equations discussed above, and the 
RSM is then given by 
 

 
' ' '

' ' ' ' ' ' ' ' '

2.3747 0.4486 0.1160 0.2375

0.0219 0.0116 0.0449 0.0022 .
x y

x y x y x y

Y P P E

P P P E P E P P E

= + + −

− − − +
  

 
This model is for the normalized random variables at the scale of [-1, 1]. Eq. 9.14 can be 
used to convert the model into the original random variables. 
 
Step 6: Use the response surface model for uncertainty analysis 
 
Since the RSM is cheap to compute now, Monte Carlo simulation with a large sample 
size of 106 is used to compute the probability of failure { }0 0fp P g D Y= = − < , where 

0D  is the allowable deflection and 0 3D in= . The calculated probability of failure based 
on the RSM is 0.000175fp = . To confirm the result, the same size of Monte Carlo 
simulation is also performed with the original performance function and the result is 

0.000157fp = . It is noted that with only 8 function evaluations (for constructing the 
RSM), the RSM based reliability analysis method produces a very accurate reliability 
result. 
 
Herein, only a simple two-level full factorial design is discussed. To make a RSM more 
accurately represent the original function, higher levels can be used. For example, in a 3-
level design full factorial design, for each design variable, in addition to the two end 
points, the center point is also used in constructing the RSM. With higher level DOE, a 
high order RSM, for example, a cubic polynomial, can be used to achieve accurate 
results. However, more levels and a higher order RSM need more experiments. To make 
reasonable good trade-off between accuracy and efficiency, a fractional factorial design 
may be considered, where not all the combinations of the design variables levels will be 
considered. The complete methodology of RSM can be found in many statistical 
experiment design books.  
 
To better capture the high nonlinearity and achieve higher accuracy, other DOE methods 
such as Kriging method, MARS (Adaptive Regression Splines), and radial basis 
functions have been developed and have been increasingly used in engineering 
applications. A vast amount of literature is available in this subject.  
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9.5 Conclusion 
 
The task of uncertainty analysis is to identify the probabilistic characteristics of 
performance functions. The probabilistic characteristics of performance functions will be 
used in the design stage for managing and mitigating the effects of input uncertainty on 
the performance. The probabilistic characteristics of performance include the moments 
(mean, standard deviation, etc.), percentile values, the probability of failure, reliability, 
and probability distributions. Depending on different applications, different probabilistic 
characteristics will be needed. For example, robust design needs mean and standard 
deviation, reliability-based design needs reliability, and risk analysis needs the 
probability of failure. 
 
In Chapters 7, 8 and 9 (this chapter), we discussed the commonly used uncertainty 
analysis methods. It should be noted that there is no universal uncertainty analysis 
method that suits all the situations in engineering analysis and design. For different 
problems, we may choose different uncertainty analysis methods. When we consider 
choosing uncertainty analysis methods, accuracy and efficiency are the major concerns. 
There always exists a conflict between accuracy and efficiency. The robustness, which 
measures if a method can successfully identify the uncertainty analysis solutions, is also a 
factor of consideration. A comparison among the methods we have discussed is given in 
Table 9.6 [3]. 
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Table 9.6 Comparison of Uncertainty Analysis Methods 

 

 MCS FORM SORM* FOSM* Worst Case 
Analysis RSM 

Requires input 
distributions  Yes Yes Yes 

Distributions 
or the first 

two moments 
Intervals May or may 

not 

Deals with 
correlation Yes Yes Yes Yes No Yes 

Requires 
derivative of 
performance 
function 

No Yes Yes Yes Yes May or may 
not 

Efficiency Needs a large 
number of 
function 
evaluations, 
especially when 
the probability is 
high. 

Efficient for 
small or 
moderate 
number of 
random 
variables; 
efficient than 
SOME; 
efficiency 
decreases with 
a large number 
of random 
variables. 

Efficient for 
small number 
of random 
variables; 
needs 2nd 
derivatives; 
efficiency 
decreases 
with a large 
number of 
random 
variables. 

Very 
efficient. 

Very efficient. Efficient 
with small or 
moderate 
number of 
design 
variables. 
Huge 
computation
al demand 
when the 
number of 
random 
variables is 
large. 

Capability and 
accuracy 

Gives accurate 
solutions when 
enough samples 
are used; can 
generate the 
complete 
distribution.  

The accuracy 
depends on the 
performance 
function and 
input 
distributions; 
generally, more 
accurate than 
moment 
matching and 
RSM. 

The accuracy 
depends on 
the 
performance 
function and 
input 
distributions; 
generally, 
more accurate 
than FORM.  

Simple to use, 
but generally 
not accurate. 
 

Approximation 
on the bunds of 
a performance 
function.  

The accuracy 
depends on 
how 
accurately 
the RSM 
represents 
the 
performance 
function; 
may result in 
errors. 

Robustness Very robust (can 
always find the 
solution.) 

The MPP 
search may not 
converge. 

The MPP 
search may 
not converge. 

Robust Robust Robust if 
MCS is used; 
the MPP 
search may 
not converge 
if FORM or 
SORM is 
used. 

* If a gradient-free optimization algorithm is used, no derivative is needed. 
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