Homework 3

- 1. The yield strength, Y, of the material used for a mechanical component, is normally distributed with $Y \sim N(200, 35^2)$ MPa. The stress of the component is also normally distributed. The field statistical data of the stress X are collected and are shown in the following table.
 - (1) What is the deterministic factor of safety?
 - (2) What is the probability of failure?
 - (3) Among 10000 components, how many components are expected to fail?

Table 1 Observations of Stress A (MFa)		
77.19	19.94	
59.11	99.65	
61.01	62.03	
86.09	83.18	
51.25	80.85	
94.52	75.53	
89.22	49.90	
54.45	51.32	
68.35	65.63	
45.30	45.30 45.35	

Table 1 Observations of Stress X (MPa)

- 2. The strength of a mechanical component follows a lognormal distribution with a mean of 200 MPa and standard deviation of 25 MPa.
 - 1) What is the probability that the component will have strength less than 180 MPa?
 - 2) What is the 95% percentile strength?
- 3. A number of CAE simulations are performed for the engine slap noise for a vehicle engine design. Through the Design of Experiments (DOE) and simulations, the model of the noise Y (dB) is created with respect to design variables X_1 , X_2 , and X_3 as

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3$$

in which $\beta_0 = 53.8974$, $\beta_1 = 0.0817$, $\beta_2 = -0.0283$, and $\beta_3 = -3.2312$; X_i (i = 1, 2, 3) are random variables, which are given in the following table.

Random Variables	Mean	Standard Deviation	Distribution
X_1 - Clearance	65	5	Normal
X_2 - Length	22.5	3	Normal
X_3 - Offset	0.9	0.1	Normal

Table 2 Random Variables

(1) If the design requirement for the noise is Y < 57 dB. What is the probability that the design satisfies the requirement?

(2) If the reliability (the probability of requirement satisfaction) is not satisfactory, how do you suggest improving the design?

4. A concrete block of 10,000 kg is towed by a vehicle through a cable. The vehicle starts from rest with an acceleration of $a \sim N(3,0.1^2)$ m/s², and the static and kinetic coefficients of friction between the block and ground are $\mu_s \sim N(0.35,0.03^2)$ and $\mu_k \sim N(0.2,0.02^2)$, respectively. The strength of the cable is $S \sim N(100,15^2)$ kN. Assume all the random variables are independent. Determine the probability that the cable would break.

5. The weight of the crate follows a normal distribution $W \sim N(1500, 180^2)$ kN. The allowable tensions of the two cables are also normally distributed with $S_1 \sim N(1200, 80^2)$ kN and $S_2 \sim N(2200, 100^2)$ kN, respectively. The three random variables are independent. Determine the reliability of the system. (Consider only the two cables. Neglect the weight of the pulley.)

