Estimate π by Monte Carlo Simulation

Xiaoping Du Department of Mechanical and Aerospace Engineering Missouri University of Science and Technology February 2014

We show how to use Monte Carlo simulation (MCS) to estimate π .

1. Approach

As shown in Figure 1, the radius of the circle is r. Let X and Y be independently and uniformly distributed on [-r, r]. Then their probability density functions (PDFs) are

$$f_X(x) = \frac{1}{2r}$$
 where $-r \le x \le r$ (1)

and

$$f_Y(y) = \frac{1}{2r}$$
 where $-r \le y \le r$ (2)

respectively.

Figure 1 A Square and A Circle

Thus, their joint PDF is

$$f_{XY}(x,y) = f_X(x)f_Y(y) = \frac{1}{4r^2}$$
 where $-r \le x, y \le r$ (3)

The probability that point (X, Y) falls into the circle is given by

$$P = \iint_{x^2 + y^2 \le r^2} f_{XY}(x, y) dx dy = \frac{1}{4r^2} \iint_{x^2 + y^2 \le r^2} dx dy = \frac{\pi r^2}{4r^2} = \frac{\pi}{4}$$
(4)

Now we draw n random points (X, Y) uniformly in the square, and suppose m points fall into the circle. Then the probability P can be estimated by

$$P \approx \frac{m}{n} \tag{5}$$

From Equations (4) and (5), we have

$$\pi \approx \frac{4m}{n} \tag{6}$$

With a higher sample size *n*, we will get higher accuracy for estimating π . When $n \to \infty$, the estimated π will approach its true value.

2. Simulation results

As shown in Figure 2, when n = 100, 79 (m = 79) points fall into the circle. $\pi \approx \frac{4(79)}{100} = 3.16$. If we increase *n* to 10^6 , a more accurate result is obtained, and $\pi \approx 3.144$.

Figure 2 Simulation Result When n = 100

3. Matlab code

%Estimate PI Monte Carlo Simulation %By Xiaoping Du, 02/19/2014 %Center of the circle = (0,0) %Radius of the circle = 1 clc;close all; clear all; n=input('Enter number of samples:'); rand('seed',108); x=2*rand(n,1)-1; y=2*rand(n,1)-1; m=sum(x.^2+y.^2<1); pi_est=4*m/n;	%# of samples %Initialize the random generator %Samples of x %Samples of y %# of samples in the circle %Estimate of PI
%Display rectangle('Position',[-1,-1,2,2]); hold on; theta=linspace(0,2*pi,1e3); rho=ones(1,1e3); [xc,yc] = pol2cart(theta,rho); plot(xc,yc,'k-','linewidth',2); axis square;	%Draw the square %Draw the circle
<pre>inside=find(x.^2+y.^2<1); outside=find(x.^2+y.^2>=1); plot(x(inside),y(inside),'r.'); plot(x(outside),y(outside),'b.');</pre>	%Get samples in the circle %Get samples outside the circle %Plot samples in the circle %Plot samples outside the circle
text(-0.8,-1.2,['m/n = ',num2str(m),'/',num2str(n), ', PI = ',num2str(pi_est,'%8.6f')],'FontSize',14); %Display the result	